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Abstract- We present an extension of the learning clas- 
sifier system XCS in which classifier conditions are rep- 
resented by RPN expressions and stack-based Genetic 
Programming is used to recombine and mutate classi- 
fiers. In contrast with other extensions of XCS involv- 
ing tree-based Genetic Programming, the representation 
we apply here produces conditions that are linear pro- 
grams, interpreted by a virtual stack machine (similar to 
a pushdown automaton), and recombined through stan- 
dard genetic operators. We test the version of XCS ex- 
tended with stack-hased conditions on a set of problems 
of different complexity. 

1 Introduction 

Learning classifier systems (LCSs) are rule-hased systems 
which exploit reinfor-cenrent learning [ 191 and genetic ulgo- 
rithnis [6] to extract interesting rules (the classifiers) from a 
set of examples [ 161. In their original description, learn- 
ing classifier systems assume that inputs and outputs are 
coded hy binary strings and, nioxf inrporrunt, that classi- 
fier conditions are strings on the ternary alphabet {O,l,#}. 
The symbol #. called don’t care, means that the correspond- 
ing position can match either a 0 either a I .  Note however 
that this assumption was intended as a simplification of the 
framework rather than an actual limitation (e.g., [7]). Along 
the years, there have heen many proposals for enhancing 
the representation capabilities of learning classifier systems 
so as to allow the representation of high level knowledge. 
Although such pmpnsals date hack to the very early years 
of Icarning classifier system research (e.g., [ISj)  only re- 
cently implementations of advanced representations have 
hcen prcscntcd (with prohahly the only exception of [201). 
The vast majority 0 1  these extensions have been imple- 
mented on Wilson’s XCS 12 I I which nowadays can he con- 
sidered onc ofthe hest performing model of learning classi- 
fier systems. In particular, [ I21 horrowed the work on messy 
genetic algorithms and extended XCS with nrecvy condi- 
rioiis; Wilson introduced conditions hased on integer and 
real intervals in 122, 231; Bull (e.g., 141) proposed clas- 
silicrs with conditions represented as neural networks and 
also with actions represented hy means of Genetic Program- 
ming I l l .  Finally. i n  [ I S ,  131 we used tree-hascd Genetic 
Programming ti1 rcprcsent classilier conditions and applied 
XCS with Lisp-like s-expressions to some supervised clas- 
silication pmhlem. One of the major ci~mpulational costs of 
applying trce-hased Genetic Programming, apart from the 
matching of rule conditions, is caused hy the genetic oper- 
ators. crossi~vcr and mutation, which in their most common 

form must examine the large part of parent conditions be- 
fore offspring can he generated. 

To reduce the computational cost involved by the genetic 
operators horrowed from tree-based Genetic Programming, 
in this paper, we extend the learning classifier system XCS 
with conditions hased on stack-based Genetic Programming 
as introduced in [17]. Classifier conditions are now linear 
programs written using Reverse Polish Notation (RPN) and 
they are interpreted by a virtual stack machine (similar to 
a pushdown automaton). Recomhination and mutation are 
implemented using standard operators borrowed from Ge- 
netic Algorithms, and therefore, in contrast with the oper- 
ators from linear encoded Genetic Programming, we are 
not guaranteed that offspring conditions will he syntacti- 
cally correct. In contrast, we note that all the represen- 
tations tested so far with learning classifier systems used 
genetic operators that generated syntactically corrected off- 
spring. We test the version of XCS extended with stack 
hased conditions on both single step problems involving the 
learning of Boolean functions and multistep problems in- 
volving small grid worlds, called woods environment. The 
results we present show that XCS with stack-based Genetic- 
Programming can perform optimally in all the prohlems 
presented here. All the experiments reported here have been 
carried out with xcslib [ 141; the files needed to replicate 
the results are availahle on request. 

The remainder of this paper is organized as follows. In Sec- 
tion 2 we overview the XCS classifier systcm as introduc- 
tion in [21] while in Section 3 we discuss how stack-based 
representation can he added to XCS. In Section 4 we present 
the design of experiments. In Section S we apply XCS with 
stack-hased representation to the 6-multiplexer and to the 
I I -multiplexer, and in Section 6 we apply it to the Woodsl. 
In Section 7 we draw some conclusions and highlight pos- 
sihle future research directions. 

2 The XCS Classifier System 

Classifiers in XCS consist of a condition, an action. and four 
main parameters: ( i )  the prediction p ,  which estimates the 
payoff expccted when the classifier is used; ( i i )  the predic- 
tion error e ,  which estimates the error of  the prediction p ;  
( i i i )  the fitness F, which estimates the rrlufive accuracy of 
the payoff prediction given hy p ;  and tinally (iv) the nu- 
merosity nunr, which indicates how many copies of classi- 
fiers with the same condition and the same actinn are present 
in the population. Note that i n  the population [PI no dupli- 
cates classifiers exist. i.e., there is only orre classifier with a 



certain condition-action pair.' 

Performance Component. At each time step, XCS builds 
a match ser [MI containing the classifiers in the population 
[PI whose condition matches the.current sensory inputs; if 
[MI contains less than Bllnia actions, covering takes place 
and creates a new classifier that matches the current inputs 
and has a random action. For each possihle action a; in 
[MI, XCS computes the systeni prediction P ( a ; )  which es- 
timates the payoff that the XCS expects if action a; is per- 
formed. The system prediction is computed as as the fitness 
weighted average of the predictions of classifiers in [MI, 
&[MI, which advocate action ai (i.e., cl.a=ai): 

where, following the notation of [ 5 ] ,  d.a is the action of 
classifier cl, cl.p is the prediction of classifier cl, and cl.F 
is the fitness of classifier cl. Then XCS selects an action to 
perform; the classifiers in [MI which advocate the selected 
action form the current action set [A]. The selected action 
is performed in the environment. and a scalar reward R is 
returned to XCS together with a new input configuration. 

Reinforcement Component. When the reward R is re- 
ceived, the parameters of classifiers in [A] are updated in 
the following order [SI: prediction, prediction error, and fi- 
nally fitness. Prediction p is updated with learning rate 0 
(0 5 p 5 1): p t p + P(R - p ) .  Similarly, the prediction 
error E is updated as: E c E + p( IR - pl - e )  

Fitness Update. The update of classifier fitness consists of 
three steps. First, the raw accuracy' K of the classifiers in 
[A] is computed as: 

A classifier is accurate if its prediction error e is smaller 
than the threshold EO so that its raw accurac? K is one. A 
classifier is itiacciirate if its prediction error e is larger than 
E O ;  the raw accuracy K of an inaccurate classifier is com- 
puted as a potential descending slope given by a ( e / e o ) - " .  
The parameter e0 (10 > 0) is the threshold that determines 
to what extent prediction errors are accepted; a (0 < a < 1) 
causes a strong distinction between accurate and inaccurate 
classifiers; w (nu > O) ,  together with 50, determines the 
steepness of the slope used to calculate classifier accuracy. 
The raw accuracj tc is used to calculate the relative accu- 
racy K! as: 

'In contrast with Wilson [?I]. in this paper we do not distinguish be- 
tween classifiers and rnacroclassifi ers. For the sake of  simplicity, we prefer 
the above defi nition that includes both the ideas all together. 

'Note that we prefer the term raw accarm? rather than the more intu- 
itive obrohrre accwoq. to put in more evidence thai I( (the raw accuracy) 
is an esrinrore of what is the true (i.e.. absolure) accuracy of the classifier. 

where  cl.^ is the raw accuracy of classifier cl, as computed 
in equation 2; cl.tiuiii is the numerosih of classifier cl. Fi- 
nally the relarive accuracy K' is used to update the classifier 
fitness as: F t F + B(K' - F ) .  

Discovery Component. On regular Liasis, roughly every 
e,, steps, the genetic algorithm is applied to classifiers in 
[A]. It selects two classifiers with probability proportional 
to theirfitnesses. copies them, and with probability x per- 
forms crossover on the copies; then, with probability p it 
mutates each allele. The resulting offspring classifiers are 
inserted into the population and two classifiers are deleted 
to keep the population size constant. 

3 Adding Stack Based Representation 

Stack-based Genetic Programming as introduced by [ 171 is 
a simplification of the first implementation presented in [IO] 
(see also [3, 81). In fact, [I71 uses the same representa- 
tion (i.e., linear program represented in Reverse Polish No- 
tation, or RPN), and the same approach to computation (i.e., 
a pushdown automaton), but, employs standard genetic op- 
erators for crossover and 'mutation, instead of the Genetic 
Programming operators developed for linear encoding, such 
for instance those discussed in [SI. Accordingly, [ 171 does 
not guarantee that offspring are syntactically correct. 

It is quite straightforward to extend XCS with stack-based 
Genetic Programming. As we have done in [15], we must 
define (i) the syntax of classifier conditions, i.e., the ter- 
minal symbols, the function symbols, and the constants in- 
volved, (ii) how classifier conditions are matched against 
the incoming sensory inputs, (iii) how covering conditions 
are generated when an unmatched input configuration is 
presented, and finally, (iv) how genetic operators work. 

Conditions. Classifier conditions are linear programs ex- 
pressed in Reverse Polish Notation.. Conditions are se- 
quences of tokens; each token can be either a variable, a 
constants, or  a function. Variables represent the values of 
sensory inputs, accordingly for every input j a variable X j  

is defined. Constants are numeric values that usually he- 
longs to the space of the sensory input values; note that 
when applying Genetic Programming to classifier systems 
ephemeral constants are not used but actual constant values 
are employed. The set of functions we use in this work in- 
cludes Boolean operators (AND, OR, NOT, EOR), arithmetic 
functions (+ and -),and comparisons (> and =). 

Matching. This involves the execution of the classifier 
conditions against the current sensory inputs. For this pur- 
pose a pushdown automaton is used. The condition is 
passed from left to right: if the current token is a constant, 
the corresponding value is pushed onto the stack; if the cur- 
rent token is a variable, the input value of the corresponding 
sensor is pushed onto the stack; if the current token is a 
function and there are enough values in the stack, the argu- 
ments are popped out from the stack, the function is com- 
puted, and the result pushed back onto the stack; otherwise, 
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if there are not enough values on the stack to compute the 
function, the function is ignored. 

Covering. The covering operators works basically as in 
XCS and it is controlled by the same parameter, i.e., the 
don't care probability P#. When no classifier condition 
matches the current sensory input, a covering condition 
is created as follows. With probability P+ XCS decides 
which sensory inputs will be covered; for each of these an 
elementary expression matching the corresponding input is 
added to the condition, note that variables are used to rep- 
resent current input values; a sufficient number of Boolean 
and are added to the condition in order to build a logical 
dis.junction. 

Genetic Operators. Crossover and mutations work basi- 
cally as in XCS. Crossover is activated with probability x ,  
i t  selects two parent classifiers, copies them, and applies a 
single point crossover to the classifier conditions (note that 
since the discovery component acts in [A], classifiers have 
the same action). Then with probability p i t  changes the 
value of every token in the conditions of offspring classi- 
fiers. 

4 Experimental Design 

The experiments reported in this paper were performed fol- 
lowing the standard settings used in the literature [21]. Each 
experiment consists of a number of problems that the system 
must solve. When the system solves the problem correctly, 
it receives a constant reward equal to 1000; otherwise it al- 
ways receives a constant reward equal to 0. Each problem 
is either a learning problem or a test problem. In learning 
problems, the system selects actions randomly from those 
represented in the match set. In tesf problems, XCS always 
selects the action with the highest prediction. The genetic 
algorithm is enabled only during learning problems, while 
it is turned off during test problems. The covering opera- 
tor is always enabled, but operates only if needed. Learn- 
ing problems and test problems alternate. After the learn- 

. ing has stopped, an additional condensnrion phase is acti- 
vated [ 131. During condensation, the genetic algorithm is 
functioning but crossover and mutation are turned off con- 
densation causes the population to shrink dramatically due 
to increase of the selective pressure towards high fitness 
classifiers while inhibiting the creation of new offspring. 
The.peri'ormance is computed as the moving average of the 
correctly ciassified examples in the last LOO test problems. 
All the s;atistics reported in this paper are averaged over IO 
experiments. 

Boolean Multiplexer. These are defined for I Boolean 
variables (i.e., bits) where I = k + Zk: the first I; 
variables (20.. .z~-~) represent an address which in- 
dexes into the remaining Z k  variables (yo.. . Y ~ L - ~ ) ;  
the function returns the value of the indexed variable. 
For example, consider the multiplexer with 20 variables 

Figure 1: The Woods1 environment. 

mp20(zg, 21, z2,z3, yo,. . . ,915) is defined as follows: 

The product corresponds to logical nnd, the sum to logical 
or, and the overline corresponds to logical not. The system 
goal is to learn how to represent the Boolean multiplexer 
from a set of examples. For each problem, the system re- 
ceives as input an assignment of the input variables: the 
system has to answer with the corresponding truth value of 
the function (0 or I ) ;  if the answer is correct the system is 
rewarded with 1000, otherwise 0. 

Woods Environments. These are simple grid worlds like 
those depicted in Figure 1, which contains obstacles (T), 
free positions (.), and food (F). There are eight sensors, 
one for each possible adjacent cell. Each sensor is encoded 
with two bits: 1 0  indicates the presence of an obstacle T; 
11 indicates a goal F; 00 indicates an empty cell. Classi- 
fiers conditions are 16 bits long (2 bits x 8 cells). There 
are eight possible actions, encoded with three bits. The sys- 
tem goal is to learn how to reach food position from any 
free position; the system is always in one free position and 
it  can move in any surrounding free position; when the sys- 
tem reaches a food position (F) the problem ends and the 
systems is rewarded with I000 in all the other cases the 
system receives zero reward. 

5 Experiments with Boolean Multiplexer 

In the first experiment, we apply XCS with stack-based con- 
ditions to the 6-multiplexer when the population size N is 
400 classifiers, P# = 0.3, P S . 2 ,  x=O& p=0.04,0,,.=2, 
ro=lO, x=O.8, p0 .04 ,  0,,,=2. and Odel=20. Condensa- 
tion starts after 50000 learning problems and lasts for 50000 
problems. 

Figure 2 reports the performance of XCS computed as the 
percentage of correctly classified examples (solid line) and 
the percentage of classifiers in the population (dashed line). 
XCS reaches optimal stable performance quite rapidly, by 
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100001earning problems. As reported with usual tree-based 
Genetic Programming in 115, 131, also with stack-based 
representation there is an immediate bloat of the popula- 
tion [9. 2, 1 I]: the number of macroclassifiers in the pop- 
ulation almost immediately reaches the 80% and remains 
stable around 85%. Then, when condensation is activated 
the number of macroclassifiers dramatically drops and after 
50000 problems with condensation activated (i.e., the CA 
is activated but crossover and mutation are turned off) the 
percentage of classifiers in the population size is around the 
4% of the population size N,  i.e, 16 classifiers. 

We extend the previous results and we apply XCS with 
stack-based to the 1 I-multiplexer when the population size 
N is 1000 classifiers, the other parameters are set as in 
the previous experiment. condensation starts after 100000 
learning problems and lasts for 50000 problems. Figure 3 
reports the performance of XCS computed as the percent- 
age of correctly classified examples (solid line) and the per- 
centage OF classifiers in the population (dashed line). XCS 
reaches optimal stable performance around 60000 learn- 
ing problems although it is already very near to the opti- 
mum by 30000 problems. A s  in  the experiment with the 
6-multiplexer, the number of macroclassifiers in the pop- 
ulation almost immediately reaches the 80% and remains 
stable around 85%; when condensation is activated after 
I00000 problems, the number of macroclassifiers dramat- 
ically drops and after 50000 problems the average popula- 
tion size is around the 3%, i.e., more or less 30 classifiers. 

6 Experiments with Woodsl 

We now apply XCS with stack-based Genetic Programming 
to the simple multistep environment named Woodsl (Fig- 
ure ??). Population size is 1000 classifiers, the discount 
Factory is 0.7, the probability P# is 0.3, while all the other 
parameters are set as in the previous experiments. Conden- 
sation starts after 10000 learning problems and last for 5000 
problems. 

Figure 4 reports the performance of XCS computed as the 
average number of steps to the goal position during the last 
100 problems (Figure 4a) and the percentage of classifiers 
in the population (Figure 4b). Figure 4a shows that XCS 
reaches opLimal performance, represented by the horizontal 
line at 1.68; likewise to the experiments with the Boolean 
multiplexer, population tends to bloat immediately reach- 
ing more or less the 90% stably until condensation starts 
after 10000 problems; when condensation starts the num- 
ber of macroclassifiers in the population drops dramatically 
reaching over ten experiments an average of 30 classifiers. 
Note that. as in all the other experiments, the performance 
remains optimal although the population is shrinking due to 
condensation. 

7 Summary 

We extended XCS by adding a representation of classifier 
conditions that is borrowed from stack-based Genetic Pro- 
gramming. We tested the new version of XCS on different 
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Figure 2: XCS with stack-based representation in the 
6-multiplexer. Percentage of correctly classified examples 
(solid line). Percentage of classifiers in the population 
(dashed line). Population size N = 400. Curves are'av- 
erages over 10 experiments. 

Figure 3: XCS with stack-based representation in the 
1 I-multiplexer. Percentage of correctly classified exam- 
ples (solid line). Percentage of classifiers in the population 
(dashed line). Population sire N = 400. Curves are aver- 
ages over 10 experiments. 
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problems showing that XCS always performed optimally. 
This result is quite interesting. This representation easily 
generates conditions that are not syntactically correct since 
genetic operators do not take into account any informa- 
tion about operators structure and arity. Accordingly, the 
search space of the feasible solutions is highly redundant. 
even more than with symbolic conditions (as those we used 
in [15]). Nevertheless, XCS can still learn optimal behavior 
even with small population sizes. In fact, if we compare the 
values of h' used in the experiments presented here, we note 
that they are very near to those used for the original version 
of XCS, based on the simpler ternary representation. Fu- 
ture work includes a comparison between ternary, symbolic, 
and stack-based representation, reparding the performance 
in terms of computation speed; as well as the application of 
stack-based representation on more difficult problems. 
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(a) The performance computed as the average number of 
steps to the goal position; (b) The percentage of classifiers in the population. Curves are averages over I O  experiments 
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