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Abstract—Inspired by biological immune principles, a novel
Immune Genetic Programming based on Register-Stack
structure (rs-IGP) is proposed in this paper. In rs-IGP, an
antigen represents a problem to be solved, and an antibody
represents a candidate solution. A flexible and efficient antibody
representation based on register-stack structure is designed for
rs-IGP. Three populations are adopted in rs-IGP, ie. the
common population, the elitist population and the self set. The
immune genetic operators are also developed, including clone
operator, recombination operator, mutation operator,
hypermutation operator, crossover operator and negative
selection operator. The experimental results demonstrate that
rs-IGP has better performance.

I. INTRODUCTION

VOLUTIONARY algorithm is a kind of intelligent

search or optimization algorithm, which simulates the

biological evolutionary procedure and problems solving
mechanism [1]. In this field, a broad range of methods are
proposed such as genetic algorithm (GA), evolutionary
strategy (ES), evolutionary programming (EP), genetic
programming (GP) and gene expression programming
(GEP). The fundamental differences of these algorithms are
in the aspects of individual representation and particular
evolutionary operators [2]. For special, GP and GEP provide
creative techniques for automatically generating computer
programs [2-4].

In this paper, inspired by biological immune principles, a
novel immune genetic programming based on register-stack
structure (rs-IGP) is proposed as an approach to generating
computer programs automatically. In rs-IGP, an antigen
represents a problem to be solved and an antibody in the
population represents a candidate solution. The affinity
between an antigen and an antibody reveals how perfect the
problem is solved. A novel and efficient antibody encoding
strategy based on register-stack structure is designed for
rs-IGP. Three populations are involved in rs-IGP, including
the common population, the elitist population and the self set.
And the corresponding operators, including clone operator,
recombination operator, mutation operator, hypermutation
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operator, crossover operator and negative selection operator,
are developed in this paper. Experimental results demonstrate
that rs-IGP is much more efficient than existing Immune
Programming (IP) and Genetic Programming (GP).

II. RELATED WORKS

Currently, there are many works about Artificial Immune
System (AIS). Some algorithms in AIS have been proposed,
such as clone selection algorithm, negative selection
algorithm, resource limited artificial immune system and so
on [5-10]. They have been applied into numerous types of
problems such as computer security, classification,
clustering, pattern recognition and optimization [6, 9, 11-14].

However, only a few works have been concerned on
automatic generation of computer programs. The typical
Immune Programming (IP) algorithm is proposed by P.
Musilek and his colleagues in 2005 [15]. In [15], the
operators inspired by biological immune principles are
introduced in detail. And a stack-based antibody
representation is adopted in IP. However, the stack-based
antibody representation in [15] is fixed, and this limits the
algorithm much and makes the algorithm can only deal with
some special kinds of simple problems.

There are also some attempts about applying some immune
principles to the traditional GPs to improve their
performance. In [16], for the sake of solving the problems
with multimodal fitness landscapes, H. Yoshihiko extended
GP by introducing immunological features so as to maintain
its diversity. In [17], W. Gao introduced an improved
adaptive mutation operator and an improved selection
operator based on thickness adjustment mechanism in
artificial immune system into the traditional evolutionary
programming, and a fast immunized evolutionary
programming is achieved. In [18], D. McCoy and V.
Devarajan applied artificial immune systems to feature
segmentation in remotely sensed images. And the results of
their system are competitive with those obtained by GP. In
[19], N.I. Nikolaev and his colleagues applied immune
principles to traditional GP and proposed an immune version
of GP, and some experiments on machine learning and time
series prediction have been done to demonstrate the high
performance of their improved GP .

In this paper, a new antibody representation based on
register-stack structure is proposed firstly. Based on this
representation, the algorithm architecture and operators are
developed by using biology immune principles for reference.
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III. THE IMMUNE GENETIC PROGRAMMING BASED ON
REGISTER-STACK STRUCTURE

A. Immune Metaphor

The vertebrate immune system is composed of an innate
immune system and an acquired immune system. The main
role of the immune system is to discriminate “nonself” from
“self” and eliminate the non-self called pathogens.
Lymphocytes play an important role in acquired immune
system, and the primary two kinds of lymphocytes are B-cells

Initial

and T-cells [20, 21]. The immature B-cells (Pre-B) and
T-cells (Pre-T) are generated in bone marrow, while mature
in bone marrow and thymus respectively. During the
maturation process, the B-cells or T-cells who can recognize
“self” are removed. This process is called Negative Selection
[7, 21]. The mature immune cells which recognize a pathogen
will be activated and rapidly differentiate and proliferate [6,
20]. Therefore, the immune cells with higher and higher
affinities will be obtained.
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Fig. 1. The flowchart of the immune genetic programming based on register-stack structure

B. Flowchart of rs-IGP

The flowchart of the immune genetic programming based
on register-stack structure (rs-IGP) is shown in Fig.1. There
are three populations in this algorithm. One is the common
population, another is the elitist population and the third is
the self set.

--Initially the common population consists of some
randomly generated antibodies, while both the elitist
population and the self set are empty.

--During the evolutionary iteration, the antibodies with
highest affinities are added into the elitist population, while
the antibodies with lowest affinities are added into the self
set. When one antibody in common population is inserted
into the elitist population or the self set, it will be removed
from the common population. And a new antibody randomly
generated will be added into the common population instead
of the removed one.

--When the elitist population or the self set is full, the
updating strategies of both the elitist population and the self
set are first-in-first-out (FIFO). That is to say, the oldest
individuals will be discarded.

--During the evolutionary iteration, the antibodies in the
elitist population will be evolved by the hypermutation
operator, while the antibodies in the common population will
be evolved by operators including clone, mutation,
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recombination and crossover.

Therefore, the individuals in the common population are
like the general immune cells in biological immune system,
and the individuals in the elitist population are like the
immune memory cells, while the individuals in the self set
population are somewhat like the “self” in the immune
system.

Different from most works about artificial immune
systems with negative selection [5, 7], but similar to our
previous works in [22], rs-IGP does not have a precise self
definition. In fact, the worst candidate antibodies in the
common population are added into the self set in every
generation, while the oldest individuals in the self set are
removed when the self set is full [22]. Therefore, the self set
in rs-IGP is a dynamic set. However, biological immune
system has a relative steady self set. To some extent, the
rs-IGP can also be regarded as an improved version of
traditional genetic programming algorithm. Anyway, even if
the self set is not a relative steady set, the algorithm
framework and some operators in rs-IGP is inspired by
biological immune system. Therefore, we also regarded this
rs-IGP as an immune inspired algorithm (actually called
immune programming based on register-stack structure
(rs-IP) in [23]).

The flowchart of the immune genetic programming based
on register-stack structure is shown in Fig. 1. The detailed
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steps of rs-IGP algorithm are described as follows.

1) Initialization. Set the size of the common population as
N . The initial common population is generated
randomly. The elitist population and the self set are
empty initially. Set the current evolutionary generation
number Gen =1.

2) If the current generation num Gen reaches the maximum
generation number, go to step 8.

3) Affinity Evaluation on the common population.
Calculate the affinities of the antibodies in the common
population. If the optimal solution is achieved, go to step
8.

4) Update three populations. The antibodies whose
affinities are no less than a threshold 77, in the common

population are inserted into the elitist population, and the
antibodies whose affinities are no more than a

threshold 77, are inserted into the self set. And these

antibodies in the common population are replaced by
new antibodies randomly generated. The new antibodies
should suffer the negative selection process, i.e., the new
antibodies should not match any individual in the self
set. In addition, the updating strategies of both the elitist
population and the self set are first-in-first-out (FIFO).

5) Generate the next generation of the elitist population by
hypermutation. Every antibody in the elitist population
will generate several antibodies with hypermutation until
a better one is generated. And this better antibody will
replace the original one. In order to save computation
time, the hypermutation is retried no more than
predefined times and then ignored, leaving the original
antibody in the elitist population. If the optimal solution
is achieved, go to step 8.

6) Generate the next common population.

6.1) One operator is selected from four operators

(recombination, clone, mutation and crossover), and

used to generate one antibody in the next common

generation.
Recombination. A new antibody is randomly
generated and added into the next common
population.
Clone. An antibody is selected from the common
population according to the tournament selection,
and added into the next common population.
Mutation. An antibody is selected from the
common population according to the tournament
selection. And this antibody mutates to a new
antibody. This new antibody is added into the next
common population.
Crossover. One antibody is randomly selected
from the common population; the other is
randomly selected from the elitist population. With
the crossover operation on these selected two
antibodies, two new antibodies are generated.
Randomly select one from these two new
antibodies, and add it into the next common
population.
All new generated antibodies by recombination,
mutation and crossover should suffer the negative
selection process. If one antibody can not pass the

6.1.1)

6.1.2)

6.1.3)

6.1.4)

6.1.5)
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negative  selection should be
regenerated.
6.2) If the size of the next common population does not
reach N, go to step 6.1.
7) Gen=Gen+1, go to step 2.

8) End.

process, it

From the flowchart in Fig. 1, there are two ways to obtain
the optimal solution. One is through the hypermutation
operation on the elitist population, and the other is through
mutation, crossover or recombination operations on the
common population.

In rs-IGP, the elitist population consists of some elitist
antibodies with good affinities. The hypermutation operation
on the antibodies in elitist population can strengthen
neighborhood searching ability of rs-IGP, and can fasten its
convergence speed.

The common population consists of some antibodies with
general affinities. The recombination, mutation, clone and
crossover operations on the antibodies in common
population can maintain the population diversity and enlarge
the searching space.

The self set consists of some antibodies with bad
affinities. This is used in the negative selection process. In
this process, the antibody who tightly matches any one in the
self set will be removed. The negative selection process can
avoid generating too many useless antibodies and force the
algorithm towards the good direction. The partial matching
rules between the self individual and the antibody could be
Hamming distance or r-continuous-bits [24]. In this paper,
the Hamming distance is adopted as the partial matching
rule.

C. Genotype and Phenotype of the Antibody

The antibody representation is the foundation of the
immune genetic operators. In [25], J. Devaney proposed the
representation principle “Once a problem is described using
an appropriate representation, the problem is almost
solved.” So the representation is very important for solving a
problem and has much effect on the algorithm performance.

The most famous algorithms for computer program’s
automatically generation are genetic programming (GP) and
gene expression programming (GEP). In GP, the genotype is
mainly based on tree or S-expression [4, 25]. While in GEP,
the genotype is based on K-expression [2, 3]. For this kind of
algorithms, the phenotype is a piece of computer program.
For simple, it can be an arithmetic expression.

There are several attempts to apply the stack-based
structure to represent the individual (i.e. the candidate
solution) [15, 26]. Stack-based machines have a small size,
low system complexity and high system performance [27].
Because all the operands are located and accessed on the
stack, the instructions are short and simple [15, 27]. In [15],
the immune programming (IP) are demonstrated using
stack-based examples, where both the stack depth and the
stack data are fixed. This makes the IP too difficult to solve
complex problems. One significant drawback of stack-based
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machines is that it’s very difficult to visit the data deep in
stack, unless the instruction "duplicate the Nth data element"

provided [27].

TABLE 1. ONE EXAMPLE OF THE INSTRUCTION SET [15, 27]

Stack Operate Instruction

Instruction Code Description Stack  Register
DUP A Duplicate the top of the stack XXy z
SWAP B Swap the top two elements of the stack y X z
OVER C Duplicate the 2nd element of the stack yxXy z
NOP D No operation Xy z
Stack Arithmetic Instruction

S-ADD E Add the top two elements of the stack x+y z
S-MUL F Multiply the top two elements of the stack x*y z
Register-Stack Arithmetic Instruction

RS-ADD G Add the top of the stack and the register y x+z
RS-MUL H Multiply the top of the stack and the register y x*z

For flexibility, in rs-IGP the genotype is based on
register-stack structure. The instruction set adopted in our
rs-IGP experiments is given in Table | . Besides the stack
instructions mentioned in [15, 27], some register-stack
instructions are appended. The operand set consists of the
variants of the problem to be solved. For convenience, each
instruction is represented by a single upper letter. In Table |
, to illustrate the functionalities of the instructions, it is
supposed that the initial data in stack and register is In and
{z} respectively. And the data changes brought by the
instructions are shown in the “Stack” and “Register”
columns in Table I .

+(* O+, ), 2)

(b) S-experession

CEFF

z (d) Stack based

+* ZX XY GEHG xxyz

(e) Register-Stack based

X y
(a) Tree (c) K-experession
Fig. 2. Different representations for the phenotype x’ +Xxy+2z:(a) Tree

representation; (b) S-expression; (c¢) K-expression; (d) Stack based
representation; (¢) Register-Stack based representation

For the same phenotype, arithmetic expression

x* +xy+z, several different representations are shown in

Fig. 2. Notably, as for the stack-based representation adopted

n [15], the stack elements are fixed, i.e.and the default
operand of each instruction is the top of the stack. So, the
individual representation does not include the operands.

The antibody of rs-IGP consists of an instruction head and
an operand tail. The instruction head consists of symbols
coming from the instruction set. The operand tail consists of
symbols only coming from the operand set, and is stored in
the stack. Because only one register is used and the register
data is not initialized, the register data does not encoded into
the antibody representation. For these instructions
introduced in Table I, one instruction most consumes one
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operand. So, when 7> H +1, every instruction in the head of
antibody can be executed successfully. In which, 7 denotes
the tail length and # denotes the head length. In general,
there will be some redundant operands in the tail. The
instructions in the head of an antibody are executed one by
one, and the result is obtained in the register.

GEHG xxyz
Register
| [x] [x] ey [xewiz]

Stack

X X Xty z

X y z

y z

4

Fig. 3. An example of translation from genotype (GEHG xxyz) into
phenotype

One example is shown in Fig.3. Especially, when the first
register-stack arithmetic instruction executes, the top
element of the stack will be directly moved to the register
because the register data is not initialized.

D. Affinity Evaluation

In rs-IGP, the antigen represents the problem to be solved.
The problem can be described in different ways. One is to
provide the pairs of inputs and outputs. The other is to
provide the arithmetic expression directly. However, it is
difficult to evaluate the similarity of two arithmetic
expressions directly because one arithmetic expression has
many different forms. Therefore, to compute the affinity, the
pairs of inputs and outputs values are sampled according to
the given arithmetic expression. That is to say, the inputs of
the arithmetic expression are sampled and the corresponding
outputs are calculated. These pairs represent the relation
requested by the arithmetic expression to be solved.

For example, the antigen is x> + xy + z, and five numerical

values are sampled for each input {(x, y, z)} = {(48, 0, 61),
(25, 52, 2), (88, 29, 3), (26, 95, 19), (34, 4, 9)}. The
corresponding output values of the antigen are {2365, 1927,
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10299, 3165, 1301}. Because the number of the sampling
values of inputs is limited, maybe the pairs can not
completely represent the relation requested. But when the
sampling space is large and the data distribution is
appropriate, the relation requested by the arithmetic
expression can be completely represented.

For an antibody, the operands are replaced by the
corresponding sampling values and the output is calculated
by executing the instructions in the antibody one by one, as
described in part C of section III. As for the antibody GEHG
yyxzx, if five input samples are {(x, y, z)} = {(48, 0, 61), (25,
52,2),(88,29,3), (26,95, 19), (34,4, 9)}, the corresponding
outputs are {61, 4006, 3396, 11514, 161}.

The affinity between an antigen and an antibody reveals
how perfect the problem is solved. As for rs-IGP, the affinity
is calculated according to the difference between the outputs
of one antibody and the expected outputs. For convenience,
it should be normalized. The affinity evaluation function
adopted in this paper is shown as equation (1).

- Jo, e

Affinity (A) = l—ﬂ (Vi,‘a, —e,\s\e, ‘) M)
n
0.05 (3,

a, —e,‘> ‘e“)
In this equation, n denotes the number of the sampling
input/output pairs, e, represents the ith expected output, and

a, represents the ith output of the antibody 4. According to

equation (1), higher the affinity is, more perfect the problem
is solved. And when the output of the antibody is far away
from the expected output, the affinity value is set as a small
value, i.e. 0.05.

E.  Operators

In rs-IGP, there are six primary operators: hypermutation,
recombination, clone, mutation, crossover and negative
selection. Among these operators, the hypermutation is
conducted on the elitist population, while other operators are
conducted on the common population.

Hypermutation: At every generation, each antibody in
the elitist population will be hypermutated to generate a
better one. Each gene in the antibody has a probability with
P, to be mutated. The hypermutation operator is retried

ghm
again and again until a better antibody is achieved. For each
antibody, the maximum number of new antibodies is denoted
by the parameter HyperNum . If no better antibody is

achieved after HyperNum antibodies are generated, keep

the original one. The hypermutation operator can strengthen
the neighborhood searching ability and can fasten the
convergence speed.

One operator is selected from recombination, clone,
mutation and crossover, and used to generate one antibody in
the next common generation. The selection probability of
recombination operator, clone operator, mutation operator
and crossover operator is denoted as P, P, P and P,

m

respectively (P. + P +P, + P =1).
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Recombination: A new antibody will be generated
through recombination operator by randomly selected genes.
In order to keep the antibody’s validity, the genes in the head
of the antibody can only be selected from the instruction set,
and the genes in the tail only from the operand set. This
recombination operator can improve the population
diversity.

Clone: The clone operator just copies the selected
antibody to the next common population directly. The
selection strategy adopted in this paper is tournament
selection. Other selection strategy such as roulette wheel
selection can be adopted too. This clone operator can keep
the good individuals in the population.

Mutation: As for the mutation operator, every gene in the
antibody has a certain probability P, to be mutated. One

an
gene can only mutate to a gene with the same type. This
means that a gene in the head of the antibody can only mutate
to a gene in the instruction set, and a gene in the tail can only
mutate to a gene in the operand set. Similar to clone operator,
the tournament selection strategy is adopted in this paper to
select the antibody. Therefore, this mutation operator gives
chance to the antibodies with good affinities to be better
antibodies.

Crossover: As for crossover operator, two parents are
selected randomly, one from the elitist population and the
other from the common population. Then the one-point
crossover strategy is adopted. One of the children will be
selected randomly and added into the next common
population. This crossover operator makes the children keep
some better pieces of the elitist antibody.

Negative selection: The negative selection operator is
adopted to filter the new antibodies. If the Hamming distance
between a new antibody and any self individual is less than
the matching threshold, this new antibody will be removed.
That is to say, if the number of identical genes in the
corresponding positions is no less than the matching
threshold, this new antibody will be removed. This negative
selection operator can delete useless antibodies and can force
the algorithm towards the good direction.

For convenience, the matching degree of any two

o . l
individuals is calculated as f‘? , where /,, denotes the

number of identical genes in the corresponding positions of
two individuals 4 and B, and L denotes the length of the
individual. And the matching threshold 77, is set as 0.7 in

this paper. As for a new antibody A and a self individual B, if

AB

IT isno less than 77 , these two individuals match. And the

m?>

new antibody A will be removed.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, the proposed rs-IGP is tested by some
arithmetic expressions. All arithmetic expressions used in
[15] are considered in this paper. Besides this, the
comparative experiments of rs-IGP, IP and GP are
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conducted, and some more complex experiments are
conducted too.

In this paper, the fixed parameters in all the experiments
are listed as follows: HyperNum =10 ,

P, =003, P, =006,P=03,P=01,P =04,

ghm am m
P =02,1n,=07,n=03,n,=07. In addition, as
adopted in [15], the number of the input/output samples is 5.
The head length of the antibody is H , the tail length is
H+1. So the antibody length is 2H +1. The size of
common population is N, the size of the self set is the same
as the common population, and the size of the elitist
population is half of the common population.
Each experiment is run 10 times independently. All
experiments are run on a personal computer with Intel
3.0GHz CPU and 1G DDR RAM.

A. Simple Experiments

In this subsection, different kinds of arithmetic
expressions are considered. In this section, the size of the

common population is set to 20. The experimental results for
these arithmetic expressions are shown in Table 1I.

In Table II , the “Generation” means the average
generation of 10 times experiments, and the number in
brackets is the standard deviation. The “Time” is the total
executing time for 10 times experiments. The unit of time is
second and its precision in our experiments is one second.

From Table II, it can be observed that all these simple
problems can be solved perfectly almost in one second.
Therefore, the rs-IGP algorithm proposed in this paper is a
very efficient algorithm. It is noted that these simple
expressions are also tested in [15], and the reulsts are almost
equivalent to those given in Table II . However, these
arithmetic expressions are too simple. In part B of section IV
, amore complex arithmetic express in [15] is adopted in the
comparative experiments.

TABLE II. EXPERIMENTAL RESULTS FOR FIVE SIMPLE ARITHMETIC EXPRESSIONS

Head Length 9 10 11 12 13
x8 Generation 76.9(46.5) 24.3(22.1) 16(17.9) 14.509.5)  9.9(11)
Time 12 6 3 3 3
2 Head Length 6 7 8 9 10
xXy+y +z Generation 24.4(19.9) 16.8(10.5) 27(23.7)  18.5(15.8) 13.9(11.6)
Time 3 2 4 4 3
Head Length 4 6 8 10 12
(xy)z Generation 13.3(15.9) 2.9(2.1) 4(3.8) 4.7(5.2) 5.8(5.7)
Time 1 1 1 1 2
Head Length 4 6 8 10 12
(x+ y)2 Generation 17.9(16.1) 8.9(6.7) 6.1(6.8) 7.1(5.2) 11(8.7)
Time 1 1 1 2 2
) ) Head Length 8 10 12 14 16
X"+ y + X+ YV Generation 25.7(14.9) 15.7(12.9) 11.6(7.8) 17.2(15.7) 12.1(6.6)
Time 4 3 3 4 4

B. Comparison of rs-IGP, IP and GP

In this subsection, the performance comparisons of
rs-IGP, IP in [15] and GP have been done. In [15], the stack
data are fixed and the antibody consists of only symbols
coming from the instruction set. This is similar to the
instruction head of the antibody in rs-IGP. So, the head
length of the antibody in rs-IGP is set the same size as the
antibody length in IP [15]. In addition, GP used to be
compared in this section is a stack-based version mentioned
in [15, 26].

The arithmetic expression considered in this experiment is
(x+y)’. The antibody’s length in IP and GP is 10, and the
antibody’s head length in rs-IGP is 10 too. The stopping
criteria is either an optimum solution is found or the
maximum generation is reached. The maximum generation
G, is set to 1000. Each experiment has been done 10 times

independently. The average generation number and the
success ratio are shown in Table III. The number in brackets
is the standard deviation. In addition, as for rs-IGP, the
“Population Size” in Table Il means the size of the

common population. Because the affinities of the individuals
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in both the common population and the elitist population of
rs-IGP are needed to be evaluated, and the fitness evaluation
is the most complex operator, the number of fitness
evaluations is also given in Table III for fair comparisons,
denoted by NAE.

In Table IIL, the results of GP and IP are taken from [15].
There are no standard deviations for the average generations
and the number of affinity evaluations in [15]. As for IP and
GP in [15], the number of affinity evaluations in Table III is
estimated by the product of “Average Generation *
Population Size”.

From Table III, it is demonstrated that the rs-IGP is clearly
superior to IP and GP in average generations, average
number of affinity evaluations and success ratio. Even if the
common population size is small, i.e., 10, the success ratio of
rs-IGP still can reach 100%. There are three primary reasons:
(1) An elitist population is maintained and a hypermutation
operator on the elitist population is adopted in rs-IGP. This
can strengthen the neighborhood searching ability much and
can fasten the convergence speed. (2) The representation of
antibody in rs-IGP has better flexibility. (3) The common
population in rs-IGP has better diversity. This is maintained
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by the recombination operator, clone operator, mutate

operator and crossover operator.

TABLE III. COMPARISON OF RS-IGP, IP AND GP

Population Size 10 50 100 200 300 400 500
Generation N/A 468 266 103 130 130 32

GP [15] NAE’ N/A 23400 26600 20600 39000 52000 16000
Success Ratio 0% 40% 60% 60% 90% 90% 90%
Generation 553 76 30 28 17 18 19

IP [15] NAE 5530 3800 3000 5600 5100 7200 9500
Success Ratio 90% 100% 100% 100% 100% 100% 100%
Generation 52.7(24.4) 9.9(12.1) 7.3(7.7) 2.8(1.8) 4(3.2) 3.5(3.2) 2.4(1.7)

rs-IGP NAE 2337(1570) 2304(3315) 2070(2149) 1625(924) 3654(3186) 4444(3992) 3408(1841)

Success Ratio 100% 100% 100%

100% 100% 100% 100%

*NAE means the number of affinity evaluations.

C. More Complex Experiments

The immune programming algorithm proposed in [15] is
very limited for its fixed stack structure. So, IP can only
solve some special kinds of simple problems. For example,
the simple arithmetic expression ab+cd can not be solved
through IP. But this problem can be easily solved through
rs-IGP proposed in this paper, because the representation of
antibody in rs-IGP has more flexibility. And rs-IGP can
solve more complex problems, such as
a’+b* +c* +ab+bc+ca . These two examples are adopted

in this section and the experimental results are shown in
Table V.

Each experiment has been run 10 times independently,
and the “Generation” in Table [V means the average value of
the 10 times experimental results. The number in brackets is
the standard deviation. Noted that if one experiment does not
achieve the optimal solution before the maximum
generation, the iteration number is not counted into the final
average value (i.e., “Generation” in Table [V).

TABLE IV. EXPERIMENTAL RESULTS FOR EXPRESSIONS ab +cd axp a” +b° +¢* +ab+bc + ca

ab+cd

Head Length 6 8 10 12 14
Generation  50.8(36.4) _ 79.6(87.9) 46.9(29.9) 1133(893)  74(57.8)
Success Ratio  100% 100% 100% 100% 100%
a’+b*+c’+ab+bc+ca

Head Length 10 12 14 16 18

Generation
Success Ratio

3212.8(3859.8) 6055.8(3244 4)
50% 60%

3956.4(3164.7) 4272.4(3229.7) 2952(2832.8)
90% 100% 100%

For the expression ab+cd , the maximum generation
G, is set to 300. While for a’+b*+c* +ab+bc+ca,

ma;

G,.. is set to 10000. The common population size N is set to

20 in each experiment. One solution for expression
ab + cd with head length 5 is “BHHFGdcabdb”, and another
with head length 10 is “CDEGEHFGFGbacccbbecec”.

The experimental results shown in Table [V demonstrate
that rs-IGP can solve some complex problems. When the
antibody length increases, the number of satisfied solutions
increases. So, this makes it easier to find a satisfied solution.
But at the same time, the searching space also increases. This
will increase the difficulty of searching for a satisfied
solution. This is a dilemma. Therefore, a better algorithm
performance will be achieved if the antibody length is
appropriately set. Furthermore, other parameters such as
P,P,P ,n,,n, aso can be tuned to achieve a better

performance. These will be our further works.

V. CONCLUSIONS

In this paper, a novel Immune genetic programming based
on Register-Stack Structure, namely rs-IGP, is proposed.
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The rs-IGP is inspired by biology immune principles and can
automatically generate computer programs, no need domain
knowledge and no need human’s interaction. The antibody
representation based on register-stack structure is given in
this paper. The operators including hypermutation,
recombination, clone, mutation, crossover and negative
selection are designed. The experimental results show that
rs-IGP is a very efficient approach to automatically
generating computer programs, and its performance is much
better than those of both IP and GP.
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