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ABSTRACT
Voice control has emerged as a popular method for interact-
ing with smart-devices such as smartphones, smartwatches
etc. Popular voice control applications like Siri and Google
Now are already used by a large number of smartphone and
tablet users. A major challenge in designing a voice con-
trol application is that it requires continuous monitoring of
user’s voice input through the microphone. Such applica-
tions utilize hotwords such as “Okay Google” or “Hi Galaxy”
allowing them to distinguish user’s voice command and her
other conversations. A voice control application has to con-
tinuously listen for hotwords which significantly increases
the energy consumption of the smart-devices.

To address this energy e�ciency problem of voice control,
we present AccelWord in this paper. AccelWord is based on
the empirical evidence that accelerometer sensors found in
today’s mobile devices are sensitive to user’s voice. We also
demonstrate that the e↵ect of user’s voice on accelerometer
data is rich enough so that it can be used to detect the
hotwords spoken by the user. To achieve the goal of low
energy cost but high detection accuracy, we combat multiple
challenges, e.g. how to extract unique signatures of user’s
speaking hotwords only from accelerometer data and how to
reduce the interference caused by user’s mobility.

We finally implement AccelWord as a standalone appli-
cation running on Android devices. Comprehensive tests
show AccelWord has hotword detection accuracy of 85% in
static scenarios and 80% in mobile scenarios. Compared to
the microphone based hotword detection applications such
as Google Now and Samsung S Voice, AccelWord is 2 times
more energy e�cient while achieving the accuracy of 98%
and 92% in static and mobile scenarios respectively.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Voice I/O; I.5.4 [Pattern recog-
nition]: Applications—Signal processing
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1. INTRODUCTION
With remarkable advancement in smartphone technology

and increasing popularity of upcoming wearable devices, voice
control is emerging as an attractive method of interaction
with smart-devices. Voice control applications like Siri [1]
on iOS devices and Google Now [2] on Android devices are
already used by many smartphone and tablet users. Voice
control is especially an attractive choice for wearable de-
vices like smartglass and smartwatch. Such devices have a
very small touch-enabled screen which restricts the applica-
bility of touch-based control beyond a few primitive touch
gestures. For this reason, voice control is commonly used in
current commercial smartwatches [3] and smartglasses [4]. It
also holds tremendous potential as objects surrounding us
(in homes, o�ces and elsewhere) become more and more in-
telligent, and can provide various capabilities like electronic
assistance. Such devices are already becoming commercially
available (e.g. voice controlled intelligent speaker [5] that
also acts as electronic assistant).

Although voice control enables an intuitive way for users
to interact, one major challenge is that it requires continuous
sensing of audio signals. This means that a device should
turn on the microphone to continuously monitor user’s voice
commands. This results in significant energy consumption
which is a major challenge for battery-powered mobile de-
vices such as smartphones, smartwatches and smartglasses.
Voice controlled devices implement hotwords (e.g. “Okay
Google”, “Hi Galaxy”) in order to distinguish between user’s
voice commands to the device and her other conversations.
This requires the device to continuously perform hotword de-
tection by recording audio through microphone and checking
whether the spoken words are the hotwords. Reducing the
energy consumption of the hotword detection is an extremely
challenging problem. To reduce the energy consumption,
some devices utilize other low power sensors like accelerom-
eter. Here, voice control applications monitor certain move-
ments or gestures performed by the user (like double tap on
screen [3] or tilting head up [4]) before turning on the mi-
crophone to listen for voice commands. However, such solu-
tions are often not user-friendly (only work when user can
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touch/wear the device) and require user to get accustomed
to di↵erent wake-up patterns for di↵erent devices. In some
latest smartphones (e.g. Nexus 6 [6]), a dedicated low-power
processor is used for audio sensing. However, this incurs ad-
ditional cost which is not suitable for low-cost devices for
pervasive Internet-Of-Things (IoT) applications. Moreover,
there are a number of new smart devices (such as fitness
bands and smartwatches) that do not have a microphone
embedded in them. Enabling voice commands on such de-
vices still remains a di�cult challenge to solve.

In this paper, we propose AccelWord - an energy e�-
cient solution for hotword detection using the accelerome-
ter sensor. AccelWord is based on the observation that the
MEMS (MicroElectroMechanic System) accelerometer sen-
sors available in smartphones, smartwatches and nearly all
smart devices are sensitive to user’s spoken voice. When the
user speaks, the generated audio signal causes variations in
the observed acceleration in the accelerometer sensor. In
fact, we show that these variations represent user’s spoken
words surprisingly well, and it is possible to extract unique
signatures of user’s speaking the hotwords simply from ac-
celerometer data. Based on this, we build the AccelWord
system which performs the hotword detection purely using
the acceleromter data and turns on the microphone once the
accelerometer data matches the extracted signature of the
hotword. We show that AccelWord has the hotword detec-
tion accuracy of 85% in static scenarios with less than 5%
of false positive rate. Compared to the microphone-based
hotword detection, AccelWord is 2 times more energy e�-
cient while achieving the accuracy of 98%. Since low-power
low-cost accelerometer sensor is available in majority of the
devices for motion recognition, we think AccelWord will en-
able accurate yet low-energy and low-cost implementation
of voice control.

In recent research such as [7], [8], it has been observed
that MEMS accelerometer/gyroscope sensors are sensitive
to user’s speech and nearby keystrokes, posing severe pri-
vacy risks of information leakage. However, in this paper,
we are primarily concerned with how this sensitivity can be
exploited for energy-e�cient hotword detection. AccelWord
addresses multiple challenges towards creating an accurate
and energy-e�cient hotword detection. First, since the im-
pact on accelerometer due to user’s voice can be considered
as user’s voice signals modulated at a lower frequency (200
Hz in case of current accelerometers), it is not clear which
features can be used to extract hotword signatures. For
higher energy e�ciency, it is essential that the computa-
tional cost of calculating features is not very high. To ad-
dress this challenge, AccelWord utilizes low complexity fea-
tures that are often used in activity recognition (e.g. walk-
ing, running etc.) through accelerometer. Our study reveals
that these features can accurately distinguish hotwords from
other spoken words of the user.

The other important challenge in using accelerometer for
hotword detection is to separate the accelerometer variations
due to user’s movement from that due to user’s voice. This
is especially important because mobile devices like smart-
phones and smartwatches consistently move when carried or
worn by the user. In such cases, the accuracy of hotword de-
tection should be still high even in the presence of mobility.
By applying a suitable high-pass filter on the accelerome-
ter data, AccelWord can achieve a similar level (94.5%) of
accuracy as in static cases.

The contribution of this paper breaks down into the fol-
lowing aspects:

• We provide measurement-based evidence that accelerom-
eters used in today’s mobile devices are sensitive to
user’s voice. It is also demonstrated that the varia-
tions in accelerometer data when user speaks di↵erent
words are su�ciently di↵erent which allows us to ex-
tract unique signatures of hotwords.

• We design and implement AccelWord framework which
detects user’s speaking of hotword purely by monitor-
ing the accelerometer sensor data. It utilizes statistical
pattern and frequency analysis to create signatures of
the hotwords using the accelerometer readings. The
extracted signatures are then used to train a classifier
that can detect the hotword in real-time. We show
that AccelWord can perform accurate hotword detec-
tion even in the presence of user mobility and high
audio noise.

• We implement AccelWord on Android smartphone and
evaluate it using experiments with 10 users. It is shown
that AccelWord can detect the hotword with an aver-
age accuracy of 85% in static scenarios and average
false-positive rate of 4.7%. When the user is mobile,
the accuracy and false positive rate are observed to be
80% and 5.6% respectively. Compared to microphone-
based hotword detection applications - Google Now
and Samsung S Voice - AccelWord can achieve 98%,
92% and 93% of accuracy in static, mobile and noisy
scenarios respectively.

• We show that AccelWord performs accurate hotword
detection while consuming comparatively very low en-
ergy. Measurement results on two di↵erent phones
show that AccelWord consumes 50% and 57% less power
than Google Now and Samsung S Voice respectively.

The rest of the paper is organized as follows. We give a
brief overview of AccelWord in Section 2. The feasibility of
AccelWord is verified in Section 3. In Section 4, we present
how the voice signature is extracted and how the training is
performed. The implementation and the performance evalu-
ation of AccelWord are presented in Section 5 and Section 6.
We discuss the future explorations and the related work in
Section 7 and Section 8 respectively. Section 9 concludes the
paper.

2. OVERVIEW OF ACCELWORD

2.1 Motivation: Energy Expensive Voice
Con-trol

In this section, we first take a look at how current voice
control applications operate and their energy e�ciency. Most
current voice control applications use “hotwords” detection
to enable complete speech recognition. This is shown in
Fig. 1. When a voice control application is running, it con-
stantly listens for the hotwords spoken by the user. Exam-
ples of such hotwords include “Okay Google” or “Hi Galaxy”
for Google Now [2] and Samsung S Voice [9] applications re-
spectively. When the hotwords are detected, any following
spoken words by the user are recognized using speech recog-
nition. The purpose of using hotword detection instead of
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Figure 1: Flow chart of microphone based hotword
detection

continuously recognizing every word user speaks is that it is
more computationally e�cient. This is because hotword de-
tection merely classifies the spoken words into two classes -
the hotwords and the other words - with light-weight speech
signature matching.

Although hotword detection requires lesser computation
than complete speech recognition, both of them require the
device microphone to be on all the time. Constantly lis-
tening on the microphone makes the current voice control
applications very energy ine�cient. To demonstrate this,
we measure and compare the power consumption of 2 voice
control applications - Google Now and Samsung S Voice.
We use the Monsoon Power Monitor [10] to record power
consumption on two smartphones - Samsung Galaxy S4 and
Google Nexus S. For understanding the baseline power con-
sumption, we create an android app (called “Microphone”)
that simply turns on the microphone but does not perform
any speech recognition. The example traces of power con-
sumption for all three apps are presented in Fig. 2. In order
to isolate the power consumption of the apps, we disable all
network interfaces using airplane mode (except for Samsung
S Voice which requires active Internet connection to operate)
and restrict the number of background processes to 0. After
ensuring that only the desired app is running, we measure
the power consumption of app’s Graphical User Interface
(GUI) before starting the hotword detection. This power
consumption is deducted from the total power consumption
of the app when it is running to obtain the power consump-
tion of listening, hotword detection and speech recognition.
The average values of 30 minutes are reported in Fig. 3.
Since Samsung S Voice is exclusive for Samsung phones and
is not available in Android app store, the power consumption
of S Voice on Nexus is not applicable.

It is observed from Fig. 3 that the power consumption
of the 2 voice control apps is higher than the Microphone
app due to their additional computational requirement of
hotword detection and speech recognition. Depending on
the hotword detection and speech recognition algorithms,
the power consumption increases slightly when the user is
speaking. However, in any case, the major factor on average
power consumption in all the apps is when the app is listen-
ing for the hotword. Because such apps are designed to listen
for user’s commands at all times, keeping the microphone on
and detecting hotword consumes substantial energy.

Continuous listening using the microphone and hotword
detection in current voice control apps are energy ine�cient.
This motivates us to investigate an alternative way of contin-
uous voice sensing that is both accurate and energy e�cient.
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Figure 2: Example: the power trace of three apps
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Figure 3: The Power Consumption of Current Hotwords
Detection Apps.

2.2 Design Goals and Challenges
A hotword detection scheme should meet the following

design goals in order to be truly pervasive.
Accuracy: We define the accuracy of a hotword detec-

tion scheme to be the ratio of the number of times user
spoken hotwords are correctly detected to the total number
of times the user speaks the hotword. Accurately detect-
ing the hotword is essential to any voice control application.
Even though recent voice control applications such as Google
Now have shown to achieve high accuracy in hotword detec-
tion, frequent failures to detect the hotword is one of the
dominant factors preventing pervasive use of voice control
in smartphones and wearable devices. Note that the other
dominant factor in slow adaptation of voice control applica-
tion is inaccuracy in speech recognition after the hotword is
detected. However, since there is plethora of research [11–15]
already done on this topic, we do not consider complete
speech recognition in this work and simply focus on the hot-
word detection.

Robustness: Another important design goal is that a
voice control application should be robust to its dynamic
operating environment. This means that it should be robust
in hotword detection in the following three scenarios:
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Figure 4: The System Architecture of AccelWord

(1) User mobility: It is necessary that the hotword detec-
tion accuracy is high even when the device is in constant
motion. For example it is necessary that a smartwatch de-
tects user’s hotword even when the user is walking.

(2) Di↵erent voice frequency (female or male): It is essen-
tial that the voice control application detects the hotwords
for both female and male users. Because female voice ex-
hibits higher frequency [16] than the male voice, accuracy
should be least a↵ected by the input voice frequency.

(3) Noisy surroundings: The noise of the surrounding en-
vironment can a↵ect the voice input recognition especially
when the user is in noisy outdoor places such as malls, cafes,
etc. The hotword detection accuracy should not be a↵ected
by the surrounding noise.

Energy E�ciency: As we showed in the previous sec-
tion, the current voice control applications are expensive in
terms of their energy consumption. For ubiquitous deploy-
ment of voice control in all battery-operated smart devices,
it is necessary that it operates with a smaller energy foot-
print. This requires that both - sensing of voice input and
hotword detection using signature matching - are energy ef-
ficient.

2.3 System Architecture
To this end, we design and implement AccelWord which

achieves high accuracy and energy e�cient hotword detec-
tion. AccelWord utilizes accelerometer instead of micro-
phone to listen the sound signal of the input voice. Specific
signatures are then extracted from the accelerometer data
and inserted into the AccelWord app for hotword detection.
Fig. 4 illustrates the architecture of the system.

• Hotword signature extraction: Due to the low
power consumption property of accelerometer, we try
to extract the signatures of hotwords from the ac-
celerometer readings instead of microphone samples.
The signature is constructed by comparing the set of
accelerometer readings of hearing of hotwords and the
set of accelerometer readings of hearing other random
sentences. For energy e�ciency purpose, the training
is done o✏ine.

• AccelWord app: AccelWord is a standalone app
running on Android devices. During the initializa-
tion stage, AccelWord will load the extracted signa-
ture of the hotword. AccelWord dynamically bu↵ers
a certain number of accelerometer samples and peri-
odically calculates the features of the samples. The
calculated features are compared with the extracted

signature loaded in the initialization stage. If a hot-
word is detected, AccelWord will send an intent to the
Android OS to launch the voice control, otherwise the
process will be repeated.

3. FEASIBILITY OF ACCELWORD

3.1 Accelerometer Design
Current accelerometer sensors found in smartphones and

other smart devices like smartwatches and smartglasses are
Micro Electro Mechanical Systems (MEMS). Such MEMS
accelerometers have three main components - an inertial
mass, spring legs and stationary fingers. This is shown in
Fig. 5. The inertial mass is anchored to the substrate using
two pairs of flexible spring legs. When an acceleration is ap-
plied, the inertial mass moves which causes a change in the
capacitance between the stationary fingers. This change is
recorded to accurately measure the acceleration. In a 3-axis
accelerometer, 3 separate sets of components are employed
to measure the accelerations separately.

Inertial  Mass

Flexible 
spring legs

Anchor to 
substrate

Stationary 
fingers

Acceleration 
Direction

Figure 5: A sketch of a MEMS accelerometer

3.2 Impact of Voice Signal on Accelerometer
When a user speaks, the resultant acoustic signals strike

the inertial mass of the accelerometer, causing it to move
and report very small changes in acceleration. From the
perspective of the accelerometer, such variations are consid-
ered undesirable noise, and [17–19] have studied its e↵ects
and proposed ways to combat the noise. Depending on the
sampling frequency of the accelerometer, the acceleration
changes can reflect a part of the characteristics of the user’s
voice and the spoken words. The typical maximum sampling
frequency of today’s MEMS accelerometers is in the range
of a few thousand Hz. For example, Invensense MPU-65xx
accelerometer found in Apple iPhone 6, Google Nexus 5 and
Samsung Galaxy S5 has the highest sampling frequency of
4000 Hz (referred as “output data rate” in [20]). However,
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our experiments with Android 4.4 OS shows that the operat-
ing system restricts the maximum sampling frequency of an
accelerometer to 200 Hz in order to reduce power consump-
tion (similar restriction was also observed for gyroscope [7]).
This sampling frequency has important implications on how
voice signal a↵ects the accelerometer readings.

A human ear can perceive any sound that is within the
range of 20 Hz to 20 KHz [21]. This is why a typical micro-
phone has a sampling frequency over 40 KHz since Nyquist
sampling theorem states that the sampling frequency should
be at least twice (� 40 Hz) the highest frequency in the sig-
nal (20 Hz) for reconstruction. This implies that with 200
Hz of sampling frequency of the accelerometer, we can not
perfectly reconstruct the sound. In this work, we are not
interested in the complete reconstruction of the voice us-
ing accelerometer. Such reconstruction requires a very high
sampling rate which can result in very high energy cost.
Instead, we are interested in generating signatures of di↵er-
ent hotwords spoken by the user through the analysis of ac-
celerometer readings available at a lower sampling frequency.

AccelWord is feasible because of the fact that typical fun-
damental frequency of a male’s speaking voice is between
85 Hz and 155 Hz, and female’s speaking voice is between
165 Hz and 255 Hz [22]. This means that accelerometer
data even at the sampling frequency of 200 Hz, can reflect
some parts of human voice. We first demonstrate using an
experiment that human voice has a measurable e↵ect on ac-
celerometer data even when sampled at 200 Hz.

Experiment Setup: To validate the impact of voice on
smartphone’s accelerometer, we use the experiment setup
as shown in Fig. 6. The goal of the setup is to emulate
a scenario where a user is speaking to her smartphone in
her hand or on a desk, or to a smartwatch on her wrist.
For repeatability, user’s voice is recorded by a professional
sound recording software (Audacity) at sampling frequency
of 384000 Hz and played on a phone (iPhone 4S) repeat-
edly as needed. Another smartphone (Samsung Galaxy S4
running Android 4.4.2) acts as a receiver of the voice. The
receiver phone collects the accelerometer data at the high-
est sampling rate (measured to be 199 Hz). The speaker
and receiver phones are fixed at a distance of 12 inch (typi-
cal distance between user’s mouth and her phone or watch).
To avoid any e↵ects of direct surface vibrations, we place
both the phones on separate desks that are not in contact
with each other. This first set of experiments were carried
out in a silent room inside a university building. To avoid
the acoustic interference from human presence, we remotely
control the speaker iPhone wirelessly from a di↵erent room
using a MacBook Air.

The speaker phone’s output volume is varied to generate
di↵erent Sound Pressure Levels (SPL) at the receiver. The
SPL is measured using an Android app (Sound Meter [23])
on the receiver phone (Samsung Galaxy S4). Table 1 show
the measured SPL at the receiver and example scenarios
where the SPL is observed [16,24].

Impact on Accelerometer: Fig. 7 shows the variation
of accelerometer reading when the speaker is playing vowel
“A” spoken by two of the authors. The spectrum analy-
sis of the two users and the background noise are shown in
Fig. 7a. The average SPL of the background noise measured
on the receiver is 25 dB. The receiver’s accelerometer read-
ings under di↵erent SPLs are shown in Fig. 7b and Fig. 7c.
Since the voice comes from right above side of the receiver,

X

Y
Z

Receiver

Speaker

Figure 6: Experiment Setup

Measured SPL (dB) Typical Scenario [16,24]

70
Human to phone conversation.
(distance: 12 inch)

60
Human to human conversation.
(distance: 1 meter)

50 Gentle keystroke.
40 Quiet university libraries.
30 Quiet bedroom at night.
20 Calm breathing.

Table 1: Example Scenarios of SPL Levels

the accelerometer reading on the Y axis does not vary much
(< 0.02m/s2). However, on the X axis and Z axis, we can
observe considerable amount (0.06m/s2 - 0.15m/s2) of dif-
ference on the accelerometer reading when the male SPL is
increased from 25dB to 70dB. The similar phenomenon is
also observed on the female voice input. Although the vari-
ations on X axis and Z axis caused by the female voice is
slightly lesser than the male voice, they are still significantly
higher than the variation on the Y axis. This indicates that
the human voice at high enough SPLs will have a detectable
amount of impact on the smartphone accelerometers.

3.3 Accelerometer vs. Gyroscope - Energy Com-
parison

Accelerometer is sensitive to acoustic signals mainly be-
cause it is an MEMS sensor. Another MEMS sensor - gyro-
scope - is also widely used in smartphones and other smart
devices. The gyro sensor is also shown to be a↵ected by the
voice signals in [7]. Since our objective is to use the acoustic
sensitivity of accelerometer to perform energy-e�cient hot-
word detection and not to reconstruct the complete sound, it
is necessary to compare the energy e�ciency of accelerome-
ter and gyroscope. Due to the design di↵erences in MEMS, it
is known that gyroscope sensors consume more energy than
the accelerometer sensors even at the same sampling fre-
quency [17, 20]. Comparing the specifications of accelerom-
eter and gyroscope sensors used in all major smartphones,
it is found that normal operating current of only operat-
ing gyroscope is on an average 6 times higher than the that
of operating only accelerometer [17, 20]. However, the ac-
tual power consumption when collecting these sensors’ data
depends on many other factors such as data collection appli-
cation, OS, other hardware components like CPU and mem-
ory. We measure this total power consumption on Nexus S
and Samsung Galaxy S4. Here the sensor data is collected
by our Android app at 200 Hz, and the power is measured
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Figure 7: The Impact of Speaking Vowel “A” on Accelerometer

using the Monsoon power monitor. We use the exact same
implementation for collecting the data from both sensors in
our app. The power consumption results are shown in Fig. 8.
It is observed that collecting gyroscope data consumes 55.8%
more power than the accelerometer, and as expected, both
acclerometer and gyroscope consume significantly lower en-
ergy compared to the microphone (as shown in Fig. 8d).

Based on the observations, it can be concluded that (i)
accelerometer is sensitive to the human voice, and (ii) it
is also energy e�cient. Therefore, we make use of the ac-
celerometer sensor to implement AccelWord, an app using
accelerometer to detect specific voice signals (hotwords).

4. HOTWORD DETECTION USING ACCEL-
WORD

From the previous section, we know that accelerometer
sensor is a↵ected by user’s voice. In this section, we demon-
strate that the e↵ect on the accelerometer data due to the
user’s voice is rich enough so that it can also be used to de-
tect the hotwords spoken by the user. For this, we first show
what features of accelerometer data can be used to create
signatures of the hotword. Based on the signature, we build
a machine learning classifier that performs the hotword de-
tection.

While creating the signature of hotwords using the ac-
celerometer data, we focus on two goals:

(1) We are only interested in distinguishing the hotword
from other spoken words of users. This way, our hotword de-
tection is a binary classification problem in terms of machine
learning and not a speech recognition problem where all spo-
ken words are reconstructed. Once the hotword is detected,
the microphone can be turned on to record user’s voice and
existing methods of speech recognition can be applied.

(2) Such hotword detection should be online and energy
e�cient. This means that the process of accelerometer data
collection, analysis and matching with hotword signatures
should be computationally e�cient in order for the hotword
detection to be energy e�cient. We already know from Fig. 8
that accelerometer data collection consumes less power than
recording via microphone. However, it is necessary to design
e�cient ways of analyzing and matching the accelerometer
data.

One of the most di�cult challenges in accurate hotword
detection is that user’s mobility causes significant changes
in accelerometer data. It is necessary that the hotwords are
detected even when user is mobile. For this, we need to filter
the mobility interference from the accelerometer signals to

distill the e↵ect of user’s voice before performing the hot-
word classification. We first show how to extract hotword
signature from the accelerometer data in a stationary case
and then extend our analysis to user’s mobility.

4.1 Extracting Hotword Signature
One possible approach of identifying hotword is to up-

sample the accelerometer data collected at 200 Hz to 40
KHz, and then reproduce some parts of user’s spoken words
from the resultant audio file. However, this can incur huge
energy cost due to the computational complexity of upsam-
pling as well as analyzing the additionally generated data.
Also, since we are not interested in reproducing the voice,
such additional processing is unsuitable for our application.
Instead, we take a di↵erent approach in analyzing the ac-
celerometer data as described next.

Candidate Features: We propose to use activity recog-
nition related features to analyze the accelerometer data.
Table 2 lists a set of features that are found to be highly
correlated [25] to physical activity of humans such as walk-
ing, running, sitting, standing, etc. The main advantage of
using these features over the audio analysis related features
(used in speech recognition [26,27]) is their lower computa-
tional complexity. Majority of features in Table 2 are time
series analysis of data which can be e�ciently calculated for
fast online processing.

Feature Selection: Because the candidate set of fea-
tures we want to use are primarily studied in terms of activ-
ity recognition, it is not clear how well they can be used for
hotword detection. To evaluate their usefulness, we calculate
the values of the features when user speaks the hotword and
other sentences or randomly chosen text. We use the exper-
iment setup discussed in Section 3. Two separate recordings
of user’s spoken words are played through the speaker phone
at 100% volume level (70 dB SPL at the receiver phone).
In the first recording, the user speaks the hotword “Okay
Google” once which is repeated 200 times. In the second
recording, the user speaks commonly used sentences (“Good
morning”, “How are you”, “Fine, thank you” etc.) which
are then repeated 400 times in random order. After playing
the recordings through the speaker phone, the accelerometer
data from the receiver device is used to calculate the can-
didate set of features. We set the time window for feature
calculation to be 2 seconds based on the observation that
most user could complete speaking the hotword within that
time. Note that an online hotword detection would require
considering many practical issues such as using a sliding win-
dow for continuous evaluation, and we have addressed these
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Figure 8: The Energy Consumption of Accelerometer, Gyroscope and Microphone

issues in our AccelWord app design in Section 5. Here, we
first seek to understand how the presented features can be
used to distinguish the hotword from the other words.

To determine how well a given feature can distinguish the
hotword from other spoken words, we use Information Gain
based feature selection. Information gain [28] is a commonly
used feature evaluation method where entropy of classifica-
tion is compared in the presence and the absence of a given
feature. Let G be the set of instances in which H are hot-
word instances and N are instances of other spoken words.
Let E(G) be the entropy of G. If p(H) and p(N) are the
fraction of hotword and non-hotword instances then E(G)
can be calculated as

E(G) = �pH · log2pH � pN · log2pN (6)

Let I(F ) be the information gain of the feature F . I(F ) can
be calculated as

I(F ) = E(G)�
X

f2V (F )

|Gf |
|G| E(Gf ) (7)

where V (F ) is the set of values the feature F can take and
Gf is the subset of G where the feature F = f . This way,
I(F ) can be considered as a measure of additional informa-
tion available due to the presence of feature F in classifying
the hotword and other words. The information gain values
are between 0 and 1 where a higher value indicates a feature
being more useful in classification.

Fig. 9 shows the information gain of candidate features
with respect to two classes - hotword and not hotword. It is
observed that most features in the candidate set exhibit high
information gain which shows that they can be used for hot-
word classification. Some features (Kurtosis, Skewness and
MCR) have zero information gain which means that they do
not have any useful value in classifying the hotword. We use
the rest of the features to build the AccelWord classifier.
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Figure 9: Information gain of candidate features

4.2 Combating Mobility Interference
To combat the noise caused by user’s mobility, we first

conduct a series of mobility experiments to understand the
interference of user’s mobility to our problem. Based on
the observations and analyzing the numerical results of the
mobile scenarios, we are able to design proper techniques to
detect hotwords even when the users are moving.

Mobility Experiment Setup: For the mobility experi-
ments, we use the same phones as in the static experiments
(Section 3.2). As shown in Fig. 10, the receiver phone is
wrapped to the left wrist of the user, while the speaker is
held closely to the user’s mouth. The volume of the speaker
is adjusted to ensure that the SPL at the receiver is 70 dB
when the distance is 12 inch. The user walks in approxi-
mately 1 m/s speed in a 4m⇥9m room along an elliptic tra-
jectory. For repeatability of the experiments, we will only fo-
cus on the walking and speaking mobility pattern, since the
other mobility patterns, e.g. running and speaking, jump-
ing and speaking, are quite hard for our experimenters and
volunteers to repeat for a large number of times. Therefore,
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The following features are calculated for accelerometer

signal of X, Y and Z axis over time window of t seconds

• Time domain:

Calculated separately for each X, Y and Z axis:

- Minimum, maximum, median, variance, standard deviation
- Range: di↵erence between maximum and minimum, measure
of extreme changes in acceleration
- Absolute Mean (AbsMean): average of absolute values of ac-
celeration
- CV: ratio of standard deviation and mean times 100; measure
of signal dispersion
- Skewness (3rd moment): measure of asymmetry in distribu-
tion of signal samples
- Kurtosis (4th moment): measure of peakedness in distribution
of signal samples
- Q1, Q2, Q3: first, second and third quartiles; measures the
overall distribution of accelerometer magnitude over the win-
dow
- Inter Quartile Range (ICR): di↵erence between the Q3 and
Q1; also measures the dispersion of the signal
- Mean Crossing Rate (MCR): measures the number of times
the signal crosses the mean value; captures how often the signal
varies during the time window
- Absolute Area (AbsArea): the area under the absolute values
of accelerometer signal. It is the sum of absolute values of
accelerometer samples in the window. Let asi denote the i

th

sample of accelerometer’s s 2 {X,Y, Z} axis, then

AbsAreas =

window lengthX

i=1

|asi | (1)

Calculated across X, Y and Z axis:

- TotalAbsArea: sum of AbsArea of all three axis.

AbsArea =

window lengthX

i=1

|axi |+ |ayi |+ |azi | (2)

- TotalSVM: the signal magnitude of all accelerometer signal
of three axis averaged over the time window.

TotalSVM =

"
window lengthP

i=1

qP
s2{X,Y,Z} asi

2

#

window length

(3)

• Frequency domain:

Calculated separately for each X, Y and Z axis:

- Energy: it is a measure of total energy in all frequencies. Let
mi be the magnitude of FFT coe�cients.

Energy =

window length/2X

i=1

m

2
i (4)

- Entropy: captures the inpurity in the measured accelerom-
eter data. Let ni be the normalized value of FFT coe�cient
magnitude.

Entropy = �
window lengthX

i=1

ni logs(ni) (5)

- DomFreqRatio: it is calculated as the ratio of highest mag-
nitude FFT coe�cient to sum of magnitude of all FFT coe�-
cients.

Table 2: Candidate features

we will leave the study of other mobility patterns for future
exploration.

Receiver
Speaker

Figure 10: Mobility Experiment Setup

Impact of Mobility Interference: The results of mo-
bile experiments are shown in Figs. 11 and 12. Fig.11
shows an example 1 second window of the accelerometer
readings when the user is walking and speaking. Compar-
ing Fig. 11 with Fig. 7, we can observe that the readings of
the accelerometer in mobile scenarios are at least one order
of magnitude higher than the readings in static scenarios,
which indicates extremely low signal-to-interference ratio.
In other words, the data collected on accelerometer must be
pre-processed before being used to generate the signatures
of hotwords.
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Figure 11: Example: Accelerometer Readings when User
Moves and Speaks Short Sentenses

There has been a considerable amount of research in rec-
ognizing human activities through accelerometer data. From
previous works [25,29,30], it is known that the most human
activities (such as walking, changing postures etc.) exhibit
lower frequency (0.1-2 Hz). Fig. 12 compares the frequency
domain of the accelerometer reading of the static and the
mobile scenario. It is observed that even when user is mobile
and performs high intensity activities, the energy is mainly
concentrated in the lower frequency band (<= 30 Hz). This
is confirmed in Fig. 12 which compares the FFT coe�cients
of the accelerometer signals for static and mobile scenarios.
It is observed that the energy in frequency band lower than
30 Hz is much higher for the mobile case. We also analyze
another mobility scenario where user is sitting on a chair
performing routine activities at workplace. Compared to
walking, such an activity is of lower intensity, however, it
forms an important use-case for AccelWord where user sit-
ting at home or workplace provides voice commands to her
phone. Fig. 13 shows the FFT coe�cients of such sitting
activity and compares it with a typical waking activity. In
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Figure 12: The FFT of the Static and Mobile Scenarios

both cases, the user is assumed to be not speaking anything.
We observe that sitting results in even less energy at lower
frequencies (<=20 Hz) compared to walking activities.
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Figure 13: FFT of User’s Sitting and Walking Activity

This means that a high-pass filter can be used to filter
out the mobility interference from the accelerometer signal
before calculating the features we discussed in Section 4.1.

The problem, however, is to choose the correct cut-o↵ fre-
quency for the high-pass filter since attenuating signals more
than necessary at the lower frequencies may also remove the
e↵ect of user’s voice. Since in our case, the human voice is
“received” by the accelerometer, high-pass filtering with 30
Hz can cause severe reduction in the accuracy of hotword
detection. We rely on the empirical data to find the suit-
able cut-o↵ frequency that can accurately remove mobility
interference while preserving the e↵ect of user’s voice on ac-
celerometer signal. We observed in Fig. 9 that in stationary
case, all three frequency domain features - DomFreqRatio,
Entropy and Energy - have high information gain. This
means that they are useful in classifying the hotwords from
the other spoken words. We evaluate the information gain
of these three features while applying a high-pass filter with
di↵erent cut-o↵ frequency. Fig. 14 shows the change in in-
formation gain as the cut-o↵ frequency increases from 1 Hz
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Figure 14: Impact on information gain with varying values
of cut-o↵ frequency of high-pass filter; For each feature, we
report the information gain value which is the maximum

across all three axis

to 30 Hz. When the information gain reduces, it can be
inferred that the frequency domain features which were pre-
viously important in classification are no longer useful and
the overall classification accuracy will also reduce. We ob-
serve that the information gain for the three features first
increases until the cut-o↵ frequency of 2 Hz. This means
that until this point, the high-pass filter works well in re-
moving the mobility interference and improving the classifi-
cation. However, the information gain values drop sharply
(for DomFreqRatio and Entropy) after 2 Hz which indicates
that filtering beyond 2 Hz removes information that is use-
ful in classification. Based on this empirical observation, we
choose the cut-o↵ frequency of 2 Hz for the high-pass filter.

4.3 Training AccelWord Classifier
For training the AccelWord classifier, a user is required

to speak the hotword a certain number of times while the
accelerometer data is collected. The user is also required to
utter any other randomly chosen words or sentences. Once

309



the accelerometer data is collected, the AccelWord classifier
can be trained. Additional details of how many times the
hotword is spoken etc. are provided in Section 5. Once the
training instances are provided, the features are calculated
and the machine learning classifier is built. This process of
calculating features and building the classifier can be done
on the smartphone or it can be o✏oaded to a cloud for en-
ergy savings. Note the this process is only performed once
and is not required to be repeated after the training. Also,
we do not build separate classifiers for stationary and mobile
cases as doing so would require to first detect if the user is
mobile or stationary. In all cases, we simply use one classi-
fier where any mobility in training instances is filtered using
the high-pass filter. Once the classifier is built, it can per-
form the hotword detection in real time by monitoring the
accelerometer data.

Decision Tree Classifier: For real-time classification,
we propose to use a simple sliding window based approach
where at any time instance, last t seconds of accelerometer
signals are bu↵ered. After every certain period, the features
are calculated for the bu↵ered data and signature matching
is performed using the classifier to check if the hotword was
spoken in the last t seconds or not. Because both the fea-
ture calculation and model checking need to be performed
periodically, it is necessary to choose a computationally ef-
ficient machine learning classifier. We use simple decision
tree to build our AccelWord classifier. Because a decision-
tree based classifier can be implemented using simple if-else
conditions, it can perform the classification with very low
computational complexity. This is crucial to meet our low
energy consumption goal of AccelWord.

We note that using more complex machine learning meth-
ods (such as decision trees with bagging or boosting [31]) can
improve the hotword detection accuracy, they might also in-
crease the computational cost and energy for hotword detec-
tion. We leave this exploration of optimizing accuracy and
energy of AccelWord to future work.

5. IMPLEMENTATION
We implemented AccelWord as a standalone app running

on Android 4.4.2 (API Level 19) devices. To avoid any GUI
related power consumption variations, we design the Ac-
celWord’s front-end to be simple, as shown in Fig. 15. For
e�cient calculation of the features, we rely on the data struc-
tures defined in widely used Java library “commons math”.
Since typical hotwords are usually quite short in length and
most users can speak them in less than 2 seconds, AccelWord
bu↵ers 2 seconds of accelerometer data (400 samples) in a
FIFO queue. Note that this can be adjusted based on the
typical time taken to speak the hotword. In each run of the
feature calculation, AccelWord first filters the data using a
high-pass filter with cut-o↵ frequency of 2 Hz. Then the cal-
culated features are compared with the extracted hotword
signature. We set the time interval between each feature
calculation to be a variable and test with di↵erent interval
lengths.

We train the AccelWord classifier o↵-line on a workstation
and import the model to the app. This is similar to other
voice control applications like Google Now where pre-trained
model of user speaking the hotword is incorporated in the
app. This allows a fair comparison in terms of the energy
consumption since there is no extra energy consumed for
training during the run-time.

Once the hotword is detected by the AccelWord app, it
initiates the “Google Voice Search” using
“SEARCH ACTION”Android intent. Here, the microphone
is turned on and user’s voice commands are recognized by
Google voice search engine. For better repeatability, we im-
plement two modes in the app. In the first mode (referred
as AccelWord Energy mode), we simply log the result of
hotword detection algorithm and do not initiate a Google
search even when the hotword is detected. This allows us
to measure the energy in a more controlled way where there
is no additional energy consumed for Android intent access
and other relevant processes. In the second mode (referred
as AccelWord Performance mode), the app will not only per-
form hotword detection, but will also switch to Google Voice
Search GUI if the hotword is detected.

Figure 15: AccelWord Android App

6. PERFORMANCE EVALUATION
To evaluate the performance of AccelWord, we conduct

hotword detection tests with 10 volunteers (5 females and 5
males). Two other voice control applications (Google Now
and Samsung S Voice) are used to provide the performance
comparison. The experiments are conducted on two phones:
Samsung Galaxy S4 and Google Nexus S. Since the Sam-
sung S Voice is exclusive to Galaxy phones, its data is not
reported (marked N/A) in a few (less than two) scenarios.

In the experiments, we choose “Okay Google” to be our
hotword - the same as Google Now. The Samsung S Voice
uses “Hi Galaxy” to be its hotword. For training the Accel-
Word classifier, each volunteer speaks the hotword 10 vaild
times. Here, valid means that the hotword speaking instance
is used in the training only if it can be successfully recognized
by Google Now or Samsung S Voice. Each volunteer also
speaks 20 other randomly chosen short sentences (<= 2 sec-
onds) of their liking to generate non-hotword test instances.
Once the hotwords and random sentences are recorded, each
sentence is repeatedly played 10 times (5 static and 5 mobile)
in the experiments (100 times “Okay Google”, 100 times “Hi
Galaxy” and 200 times other random sentences) to evaluate
in presence of other randomness (background noise etc.).

The performance of AccelWord is evaluated in two aspects
- accuracy and energy consumption.

Accuracy: Accuracy is evaluated with two metrics:

• True Positive (TP) Rate: It is defined as the per-
centage of instances where speaking of the hotword is
correctly recognized as speaking of the hotword.

• False Positive (FP) Rate: It is defined as the per-
centage of instances where speaking of other sentences
is recognized as speaking of the hotword.
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It is worth noting that AccelWord is a user-specific classifier
which means that a separate classifier is built for each user.
This is because the accelerometer-based hotword detection
has an added advantage that it can distinguish the user for
which the classifier was trained from the other users. This
loose form of user authentication is especially beneficial for
voice control applications since it is not only possible to de-
tect the hotword but it is also possible to recognize if it was
the owner user who spoke the hotword. We will evaluate this
claims of speaker recognition in Section 6.3. Because the fre-
quency of male and female voice is di↵erent, we present the
accuracy results for both male and female users separately.
The results with label “female” are the average values of the
5 female volunteers, and the same for the results of the 5
male volunteers.

Energy: For comparing the energy consumption, we first
measure the GUI power consumption of each of the Accel-
Word, Google Now and Samsung S Voice applications when
the app is in the foreground (screen on) but it is not run-
ning the hotword detection. This GUI power consumption is
then removed from the subsequent measurements when the
app is performing the hotword detection. This allows a fair
comparison since the GUI power consumption can be sig-
nificantly di↵erent depending on the front-end design. The
energy comparison is provided for both the devices sepa-
rately.

Our experimental results show AccelWord can achieve
similar accuracy of hotword detection as Google Now and
Samsung S Voice applications while consuming only 50% of
the energy compared to both the apps. Sections 6.1, 6.2 and
6.3 show the hotword detection accuracy, energy e�ciency
and speaker recognition results respectively. For better pre-
sentation, we show all the TP rate in figures and all the FP
rate in tables consistently.

6.1 Accuracy
We study the hotword detection accuracy in terms of three

factors: (1) SPL at the receiver phone, (2) background noise
and (3) user’s mobility.

Sound Pressure Level (SPL): Intuitively, higher value
of SPL on the receiving phone should result in better de-
tection of hotword. We evaluate this using two cases - one
where both training and testing instances have the same
SPL and the other where they have multiple di↵erent SPLs.
To achieve a desired SPL on the receiving phone, we play
the recorded audio of hotword and non-hotword sentences
on the iPhone 4S used in Fig. 6 and Fig. 10 and adjust the
iPhone’s volume without changing the distance between the
iPhone and the receiving phone.

Trained and Tested with the Same SPL: We use 5 di↵erent
values of SPL (70, 65, 60, 55, 50 dB) and train and test
separate classifiers for each. In each case, all the instances of
training and testing are of the same SPL value. 10-fold cross-
validation is used to evaluate the TP and FP rates. Fig. 16
shows the TP and FP rate values. It is observed that the
TP rate decreases monotonically as the SPL decreases while
the FP rate increases. This indicates that the signatures
generated at higher SPLs are better which allows improved
classification. We can also observe both the TP rate and the
FP rate drop to almost 0 when the SPL becomes 50 dB. The
reason is that very low sound input at 50 dB SPL fails to
cause any noticeable variation in the accelerometer data. As
we will show next while comparing with other applications,
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Figure 16: TP and FP rates when AccelWord is trained
and tested with instances of the same SPL

at 50 dB SPL, both Google Now and S Voice also fail to
recognize any human voice.

Trained and Tested with Multiple SPL: In reality, when
user speaks the hotword, the reported SPL at the receiving
phone is likely to be di↵erent at di↵erent times. To test
this realistic case, we train the classifier using instances of
multiple di↵erent SPLs and then test it with instances of a
given SPL. For example, the classifier can be trained with in-
stances of 60, 65 and 70 dB SPLs, and tested with instances
of 60 dB SPL. The results are presented in Fig. 17 and Ta-
ble. 3. It is observed that when the classifier is trained with
instances of SPL >= x, the TP rate is high for all cases
when testing instances have the SPL >= x. For example,
for training with SPL >= 60 dB, the TP rates of 60, 65 and
70 dB testing instances are above 80% in male users. Com-
pared to training and testing with the same SPL, we observe
that the accuracy drops a little when trained with multiple
SPLs. This is expected since training and testing with the
same SPL instances is likely to produce a model that fits
better. However, since training with instances of multiple
SPLs is more realistic, we will use the model trained with
instances of SPL >= 55 dB in the rest of the paper for
comparing with other apps and evaluation in noisy environ-
ments.
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Figure 17: TP rate when the classifier is trained with
instances of multiple SPLs and tested with instances of a

given SPL

From the figures, we can also observe that the TP rates
of male volunteer scenarios are relatively higher than the fe-
male volunteer scenarios. If only consider 55dB and above
scenarios, AccelWord achieves 4.1% higher TP rates on male
volunteers than on female volunteers on average. This is be-
cause the female vocal range is slightly higher than males,
while the sampling frequency of the accelerometer is lim-
ited at 200Hz. Therefore signature generated by male voice
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SPL
Tested
(dB)

FP Rate (%)

SPL Trained (dB)
>=55 >=60 >=65

70 4.8 3.3 1.3
65 6.5 5.8 2.0
60 6.9 8.3 1.3
55 7.4 4.3 0.3
50 2.0 2.1 1.5

(a) Male

SPL
Tested
(dB)

FP Rate (%)

SPL Trained (dB)
>=55 >=60 >=65

70 5.7 3.5 0.3
65 3.0 5.1 0.8
60 4.3 1.8 0.5
55 2.7 0.0 0.0
50 3.0 0.0 1.5

(b) Female

Table 3: FP rates when classifier trained and tested with
multiple SPLs

 0

 25

 50

 75

 100

 50 55 60 65 70

T
P

 r
a

te
 (

%
)

SPL (dB)

Male

AccelWord
Google Now
Samsung SVoice

(a) Male

 0

 25

 50

 75

 100

 50 55 60 65 70

T
P

 r
a

te
 (

%
)

SPL (dB)

Female

AccelWord
Google Now
Samsung SVoice

(b) Female

Figure 18: Accuracy Comparison with Google Now and
Samsung S Voice

instances is relatively more significant than the signature
generated by female voice instances.

AccelWord vs. Other Apps: We now compare the
hotword detection accuracy of AccelWord with Google Now
and S Voice with varying SPL. The results are presented in
Fig. 18. Since all the instances we consider for AccelWord
training are the ones which are valid in Google Now and
S Voice, both the apps achieve 100% of TP rate at 70 dB.
In comparison, AccelWord achieves an accuracy of 86% at
70 dB SPL. For 65 and 60 dB, AccelWord achieves higher
TP rate than Google Now and comparable TP rate to S
Voice. Starting from 60 dB, we observe that Google Now
does not react to majority of the hotwords. Since its internal
implementation details are unknown, it is unclear why the
hotword detection drops sharply after 60 dB. One possible
reason is that the FP rate increases significantly at lower
SPL. The same phenomenon is also observed with Samsung
S Voice starting from 55 dB. Therefore, we only compare
the TP rates in 65dB and above. On average, the TP rate
of AccelWord is 99.1% and 97.6% of the TP rates of Google
Now and S Voice in 65dB and above SPLs.

Accuracy in Noisy Environment: Another important
aspect to study is the impact of audio noise on AccelWord.
When a user is in a noisy environment (such as public places,
malls, cafes, etc.), the surrounding audio noise can be su�-
ciently high to cause variations in accelerometer. To evalu-
ate how AccelWord works in presence of the audio noise, we
generate two kinds of background noise - white noise using
Audacity and the background noise recorded at a local cafe-
teria. We vary the audio noise level from 30 to 70 dB. Note
that 70 dB of audio noise is already considered upper limit
of acceptable noise pollution by most countries e.g. USA (65
dBA) [32], China (70 dB) [33], Japan (65 dB) [34]. Fig. 19
and Table 4 show the TP rates and the FP rates in di↵erent
background noise SPLs. The presented results are average
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Figure 19: True Positive Rate vs. Audio Noise SPL

values when two kinds of noise are applied separately. The
hotword SPL is fixed to 70dB for all the three apps in the
noisy environment experiments.

FP Rate (%)

Noise SPL (dB) Male Female

30 4.8 4.1
40 6.9 5.4
50 6.8 4.2
60 6.3 7.8
70 7.9 8.3

Table 4: False Positive Rate vs. Audio Noise SPL

From the figure, we can observe AccelWord can achieve
comparatively lower TP rate than Google Now and S Voice
in noisy environment. On average, the TP rate of AccelWord
is only 9% and 13% percent less than Google Now and S
Voice respectively. From Table. 4, we can observe the FP
rate of the AccelWord increases as the noise SPL increases.
However, the FP rate of AccelWord is still less than 10% in
environment as noisy as 70 dB SPL. We consider this as one
of the limitations of AccelWord in its current form. Today’s
microphones employ advanced techniques for noise canceling
that can filter out the background noise. However, in its
current form, AccelWord does not have any mechanism to
cancel the e↵ect on accelerometer caused by the audio noise.
This is further discussed in Section 7.

Accuracy in Mobile Scenarios: We also tested the
performance of AccelWord in mobile scenarios. The setup
described in Fig. 10 is used for the experiments. Here, each
volunteer walks in circle for 5 minutes and this is repeated
3 times. We fix the distance between the speaker phone and
the receiving phone to be 30 inches, and the speaker phone
volume is adjusted such that received SPL is 70 dB.

As discussed in Section 4.2, the mobility causes interfer-
ence to the AccelWord hotword detection and it can be re-
moved using a high-pass filter. It was shown that a high-pass
filter with 2 Hz cut-o↵ frequency can be used as it allows us
to remove the mobility interference without removing the
e↵ect of audio signal. We verify this by varying the cut-o↵
frequency of the high-pass filter and observing the resultant
TP rate of AccelWord. The results are shown in Fig. 20.
Same as Fig. 14, we observe that hotword detection TP rate
first increases from applying no filter to cut-o↵ frequency of
2 Hz. This is because the high-pass filter removes the low-
frequency noise of user’s walking movement which improves
the extracted hotword signatures and in turn increases the
classification accuracy. Further increasing the cut-o↵ fre-
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Figure 21: Example: Energy Trace of AccelWord

quency causes a drop in TP rate because more and more
“useful” signal is filtered out while removing mobility inter-
ference, generating weaker signatures of hotword.

Although the accuracy of AccelWord is slightly lower than
in the static scenarios, the TP rate (84% with 2Hz high-pass
filter) is still high enough for accurate hotword detection.
Further improvements can be achieved by designing more
advanced methods of mobility interference cancellation.

6.2 Energy Efficiency
In this section, we will compare the power consumption of

the three apps: AccelWord, Google Now and S Voice. The
power consumption is measured using the Monsoon Power
Monitor at sampling frequency 5 kHz. An example of the
power trace of AccelWord running on Galaxy S4 is shown
in Fig. 21. Between 0s and 51s, the AccelWord app is in
the foreground but not running. This shows the GUI power
consumption of the AccelWord app. The AccelWord app
is started at 51s and it finishes its initialization at 57s, as
shown in Fig. 21b. The initialization process includes: ini-
tialize the queue cache, register the accelerometer listener to
the OS and load the pre-trained classifier model. After 57
seconds, AccelWord begins to monitor the hotwords. In this
example, we set the interval between each feature calcula-
tion to be 500 ms, and hence, we can observe approximately
10 pulses each 5 second, as shown in the enlarged Fig. 21c.

The power consumption of AccelWord is measured on a
Galaxy S4 and a Nexus S. We vary the time interval between
each feature calculation from 500ms to 1500ms. For each
time interval setting, 5 runs of measurements are conducted
on each phone, where each run lasts for 30 minutes. The
average values are shown in Fig. 22.
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Figure 22: The Power Consumption of AccelWord

From the figure, we observe the expected that the com-
putation energy can be reduced if the interval between each
feature calculation is longer. However, the energy consump-
tion of accelerator sampling will not be a↵ected. Comparing
the power consumption at 500ms interval (the highest) with
the power consumption of Google Now and S Voice shown in
Fig. 3, we can observe that AccelWord only consumes half of
the power consumed by Google Now and Samsung S Voice,
as shown in Table. 5. It is worth noting that current speech
recognition employs much more sophisticated machine learn-
ing techniques such as early rejection (compute low-cost fea-
tures first to quickly reject the non-hotwords and calculate
the high-cost features only if necessary). It also worth noting
that in terms of processing and implementation, AccelWord
may be less e�cient compared with its counterparts with
large development and maintenance teams, e.g. Google and
Samsung. It is necessary to point out that the energy sav-
ings of AccelWord is primarily due to energy-inexpensive
sensing via accelerometer instead of using the microphone.
Given that our current implementation of AccelWord is not
optimized (compared to well-designed solutions like Google
Now), even more energy savings are likely with AccelWord
when more sophisticated machine learning methods are used
along with better implementation.

Energy Saving (%)

Galaxy S4 Nexus S
Google Now 46.19% 53.85%

Samsung S Voice 57.14% N/A

Table 5: The percentage of energy saved

6.3 Speaker Identification
Although our objective of designing AccelWord is to en-

able energy-e�cient hotword detection, we observe that it
can also distinguish a user’s voice from other users. We claim
that the AccelWord hotword signatures are user-specific.
Because every user’s voice frequency is di↵erent, the ex-
tracted hotword signature of accelerometer also reflects the
user who speaks the hotword. Such speaker recognition can
be especially useful in scenarios where there are multiple
users and each of them wants to only interact with their
own smart-device without any cross-talk.

To evaluate that AccelWord users can be distinguished
from each other, we perform a multi-class classification. Here,
we use all the instances of the 10 users speaking the hotword
for training and testing with 10-fold cross-validation. The
classification results are presented in the form of a confusion
matrix in Fig. 23.
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Figure 23: Confusion Matrix of Speaker Identification (M:
Male F: Female)

It is observed from Fig. 23 that AccelWord can identify
the speakers with very high accuracy (female - 82% and male
- 88%). It is interesting to observe that none of the female
users are ever classified as male users (and vice versa). This
means that classifying whether user is male or female using
accelerometer data can be done with very high accuracy.
The feasibility of speaker and its gender identification can be
leveraged to provide user authentication along with hotword
detection using AccelWord.

7. DISCUSSION
In this section, we discuss the limitations of AccelWord

and suggest directions for further exploitation of using ac-
celerometer for specific word detection.

Higher Sampling Rate: One possible strategy to im-
prove the accuracy of AccelWord is to increase the sampling
frequency of accelerometer. On the other hand, increasing
sampling frequency may increase the energy spent on sam-
pling. So there is an optimization problem in the trade-o↵
of accuracy and energy e�ciency.

Low-power Processor: Latest smartphones such as Moto
X [35] and Nexus 6 [6] use a dedicated low-power processor
for continuous sensing related tasks (e.g. audio sensing).
When AccelWord is executed via such a processor, the en-
ergy savings are still likely to be proportionally lower than
audio sensing on such a processor.

Audio Noise Cancellation: In microphone based speech
recognition research area, there exists many high perfor-
mance and e�cient noise cancellation techniques, e.g. Least
Mean Squares (LMS), Normalized Least Mean Squares (NLMS)
and A�ne Projection (AP) [36]. However, the noise cancel-
lation in the accelerometer based hotword detection scenario
is more complex, since the noise comes from two aspects:
background audio noise and the mobility inference. Deeper
exploration on how the voice is modulated on accelerome-
ter will help to design noise cancellation algorithms for ac-
celerometer based hotword detection mechanisms.

Other Mobility Patterns: In this work, we only con-
sidered the walking and speaking mobility pattern. In re-
ality, the mobility of the users may be more complex, e.g.
running, driving or taking flights, which will result in more
severe interference. To resolve these possible problems, new
methods should be developed to remove or reduce the inter-
ference cased by di↵erent mobility patterns.

Privacy Implications. The confusion matrix shown in
Fig. 23 reveals the potential risk of using AccelWord to iden-

tify some of the user’s privacy information, e.g. user’s gen-
der. Worse still, if the attacker is able to apply a patch to
the Android system to tune up the sampling frequency of ac-
celerometer, it is also possible to use accelerometer readings
to reconstruct portions of the human speech. If this is pos-
sible, applications with access permissions to accelerometer
can also hear user’s speech creating a huge privacy risk. In
our ongoing work, we are exploring the feasibility and sever-
ity of such privacy leakage, and possible protection mecha-
nisms.

8. RELATED WORK
Speech Recognition by Microphones: In [11], the

authors introduced JustSpeak, a universal voice control solu-
tion which enables Google speech recognition on any screen
of the Android system. In [12], Ignacioet al. used Deep Neu-
ral Networks (DNN), a state-of-art machine learning tech-
nique, to identify the language spoken by smartphone users.
There are also a number of theoretical papers focusing on
improve the computation e�ciency of the training process
of speech recognition [13–15]. These works are quite dif-
ferent from ours, since AccelWord relies on accelerometer to
monitor voice signals and targets only on hotword detection.

Identify User Activities by Accelerometer: There
are a number of works focusing on identify or detect user ac-
tives by analyzing the accelerometer data. [25,29,30,37,38]
talk about general machine learning algorithms on identify-
ing mobility actives, e.g. speaking, walking, running, danc-
ing, stairs-up, stairs down. In [39], the authors designed
a wearable ring platform to detect user’s gestures up to
2Hz frequency. In [8], the authors presented (sp)iPhone
which uses the accelerometer on a smartphone to detect hu-
man keystrokes through the vibration disseminated by the
desk surface. This is di↵erent from Accelword where the
accelerometer variations are due to sound instead of direct
vibrations of a physical surface. Accelword does not require
the speaker and the receiver to be placed on the surface of
the same solid object.

Audio Reconstruction: Davis et al. presented the Vi-
sual Microphone system which can passively reconstruct the
sound in a room by camcording the vibration of a potato
chip bag in the room [40]. In [41], the authors presented
AVASR which reconstructs human speech by processing the
speaker’s lip motion captured by Microsoft Kinect. Gyro-
phone [7] is a system which upsamples the gyroscope sam-
ples received at 4000 Hz to reconstruct the audio. The up-
sampling and reconstruction procedure is computationally
expensive and unsuitable for our objective of energy e�-
cient hotword detection. We have demonstrated that the
accelerometer variations sampled at 200 Hz is enough for
hotword detection at low energy cost.

9. CONCLUSION
In this paper, we introduced AccelWord, an accelerometer

based hotword detection system for smart devices. Accel-
Word proves the feasibility of using accelerometer to detect
the signatures of voice signals. Comprehensive experiments
show AccelWord performs accurate hotword detection while
consuming comparatively very low energy. Future explo-
ration directions are also provided to further improve the
performance of AccelWord.
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